Tag Archive for: it security

CVE-2025-34028 (CVSS 10) is a maximum severity flaw in Commvault Command Center, a popular admin console for managing IT security services such as data protection and backups across enterprise environments. As of April 28th, CVE-2025-34028 has been flagged as actively exploited. CVE-2025-34028 also presents heightened risk due to the existence of publicly available proof-of-concept (PoC) exploit code and the fact that Command Center manages the backups and other security configurations for many prominent organizations.

The flaw allows unauthenticated attackers to perform Remote Code Execution (RCE) and to take complete control of a Command Center environment. Given the sensitivity and criticality of IT tasks managed by Commvault, forfeiting complete control has a high potential for disastrous impacts. For example, if backups are disabled, an organization could lose their ability to recover from a ransomware attack. This makes CVE-2025-34028 an attractive target for ransomware operators and financially motivated attackers.

The vulnerability, discovered by Sonny Macdonald of watchTowr Labs, exploits a server-side request forgery (SSRF) [CWE-918] weakness in Command Center’s deployWebpackage.do endpoint. In a successful attack, an adversary uploads a poisoned ZIP archive to a publicly accessible path. The malicious ZIP file is automatically extracted allowing attackers to trigger execution via HTTP GET request to the extracted payload.

CVE-2025-34028 affects versions 11.38.0 to 11.38.19 on both Linux and Windows platforms. Greenbone is able to detect CVE-2025-34028 with an active check that sends a crafted HTTP POST request and checks if the target connects back to the scanner host indicating that it is vulnerable to exploitation. Users of affected versions are urged to apply patches immediately. Let’s further examine the risk posed by CVE-2025-34028.

What is Commvault Command Center?

Commvault Command Center is a web-based interface written in Java that enables organizations to manage data protection, backup, and recovery operations across enterprise environments. Commvault markets itself as a single platform with modular components such as Commvault Complete Backup & Recovery, Commvault HyperScale X and Commvault Disaster Recovery. Most of Commvault’s products rely on the Command Center as their primary management interface. As such, Command Center is used to configure backup jobs, monitor systems, restore data and administer user roles and access.

As of 2025, Commvault maintains roughly 6.2% of the Backup And Recovery market share category, serving over 10,000 organizations globally, across various industries such as banking, healthcare, government and technology. Most of its customers are large enterprises, with 42% having more than 1,000 employees. With Commvault’s adoption among critical sectors including healthcare, government and Fortune 500 companies, the potential impact of this vulnerability is widespread and significant.

A Technical Description of CVE-2025-34028

The discovery and disclosure of CVE-2025-34028 was accompanied by a full technical description and PoC code. Here is a brief summary of the root cause and attack vector for CVE-2025-34028:

The root cause of CVE-2025-34028 is classified as Server-Side Request Forgery (SSRF) [CWE-918]. SSRF vulnerabilities arise when an application is tricked into accessing a remote resource without properly validating it. By exploiting SSRF flaws, an attacker can potentially bypass access controls [CWE-284] such as firewalls that prevent the attackers from accessing the URLs directly. You can think of it as “bouncing” a request off the target in order to bypass security measures. In the case of CVE-2025-34028, the SSRF flaw allows an Unrestricted Upload of File with Dangerous Type [CWE-434].

Here is how the exploit process for CVE-2025-34028 works:

Mixed among the Command Center application endpoints, the researcher found 58 that do not require any form of authentication. Inspecting these unrestricted APIs, researchers discovered the deployWebpackage.do endpoint included a parameter named commcellName, which was used to define the hostname of a URL and which was not filtered for scope. Another parameter, servicePack, defines the local path where the HTTP response to that URL should be stored.

Using a simple directory traversal technique, i.e. prepending the servicePack parameter with “../../” the researcher was able to achieve arbitrary file upload to a custom destination. The Command Center application used a hardcoded filename dist-cc.zip, indicating that the program was expecting a ZIP archive.

When supplying a ZIP archived Java executable (.jsp file), and specifying an unauthenticated route via the servicePack param, a malicious .jsp payload was uploaded, automatically extracted, where it could be accessed directly via an HTTP GET request. This results in execution of the .jsp file by Command Center’s Apache Tomcat web server and unauthenticated, arbitrary RCE on behalf of the attacker.

Mitigating CVE-2025-34028

CVE-2025-34028 affects Commvault Command Center versions 11.38.0 through 11.38.19 on both Linux and Windows platforms and has been resolved in versions 11.38.20 and 11.38.25, with patches released on April 10, 2025. For those unable to update immediately, Commvault recommends isolating the Command Center installation from external network access as a temporary mitigation.

Commvault’s Innovation releases, which are frequent, feature-rich update tracks, are typically updated automatically by the system on a predefined schedule without requiring user action. This is in contrast to Long Term Support (LTS) versions which require manual updates.

Summary

CVE-2025-34028 is a critical severity unauthenticated RCE flaw in Commvault Command Center that doesn’t require user interaction. The vulnerability has been flagged as actively exploited by CISA as of April 2025. CVE-2025-34028 affects Command Center versions 11.38.0–11.38.19 and enables attackers to take full control of backup systems. Commvault is relied upon by many large companies globally for key backup and restoration capabilities making CVE-2025-34028 a hot target for ransomware threat actors. Greenbone is able to detect affected Command Center instances with an active test that uses an HTTP POST request to verify vulnerability.

Our newly developed product OPENVAS REPORT integrates the data from practically any number of Greenbone Enterprise Appliances and brings it into a clearly structured dashboard. The user-friendly and comprehensive interface considerably simplifies the protection and safeguarding of even large networks.

Greenbone AG has been developing leading open source technologies for automated vulnerability management since 2008. More than 100,000 installations worldwide rely on the Greenbone community and enterprise editions to strengthen their cyber resilience.

“OPENVAS REPORT stands for innovation from the open source market leader.”

With our new product, we are decisively shortening the path from current security knowledge to the ability to act – faster, clearer and more flexible than ever before,” explains Dr. Jan-Oliver Wagner, CEO of Greenbone AG.

Recognize Hazardous Situations Faster and More Effectively

To protect your digital infrastructures, it is crucial to keep up to date with security-relevant events and to keep the response time to critical incidents as short as possible.

OPENVAS REPORT provides a daily updated, complete overview of the security situation of your IT infrastructure – for all decision-making levels.

Thanks to the connected Greenbone Enterprise Appliances, OPENVAS REPORT automatically recognizes computers and software in the company. Users can mark these with keywords and group and sort them as required – thus maintaining an overview even in very large networks.

Modern, User-friendly Dashboard

The OPENVAS REPORT Dashboard offers modern, user-friendly and highly flexible access for users who work with it on a daily basis. For example, filtering or sorting according to the general severity or specific risk of the vulnerabilities is possible. Companies can thus put together their own customized views, which always show an up-to-date picture of the risk situation in the company network.

Complete Overview

OPENVAS REPORT allows you to record and evaluate your company’s security situation at a glance. Thanks to its simple, clear user guidance, it prepares even the most complex data in a readable and understandable way, thus speeding up decision-making in critical situations.

With flexible and customizable filter options, OPENVAS REPORT considerably simplifies the day-to-day work of administrators and security officers.

Flexible Interfaces

The extensive export functions allow OPENVAS REPORT to be integrated even more deeply into the infrastructure, for example to process external data with OPENVAS REPORT.

Function Added value for your company
Comprehensive asset visibility Complete overview of all IT assets and their vulnerabilities in a single interface – for a complete assessment of your current security situation.
User-friendly dashboards A clearly structured, interactive dashboard makes complex vulnerability information understandable at a glance and accelerates well-founded decisions.
Flexible data processing A wide range of export, API and automation options can be seamlessly integrated into existing workflows and adapted to individual operational requirements.
Efficient data consolidation Aggregates results from multiple scanners and locations in a central database – reduces administrative effort and improves response time.
Customizable classification of vulnerabilities The severity levels and freely definable tags make it possible to precisely map internal compliance and risk models.
Extended reporting functions Target group-specific reports (C-Level, Audit, Operations) can be generated at the touch of a button: filters and drill-down links provide focused insights into critical security problems.

Learn More

Are you interested in a demo or a quote? Contact our sales team and find out more about OPENVAS REPORT. Write to us:sales@greenbone.net or contact us directly. We will be happy to help you!

When it comes to protecting your organization from digital threats, who should you trust? Reality dictates that high-resilience IT security is forged from a network of strong partnerships, defense in depth; layered security controls, and regular auditing. Defensive posture needs to be monitored, measured and continuously improved. While vulnerability management has always been a core security control, it is nonetheless a fast moving target. In 2025, continuous and prioritized mitigation of security threats can have a big impact on security outcomes as adversarial time-to-exploit diminishes.

In March 2025’s monthly Threat Report, we will highlight the importance of vulnerability management and Greenbone’s industry leading vulnerability detection by reviewing the most recent critical threats. But these new threats only scratch the surface. In March 2025, Greenbone added 5,283 new vulnerability tests to our Enterprise Feed. Let’s jump into some of the important insights from a highly active threat landscape.

The US Treasury Breach: How Did It Happen?

In late December 2024, the U.S. Treasury Department disclosed that its network was breached by Chinese state-backed hackers and subsequently leveraged sanctions in early January 2025. Forensic investigations have tracked the root-cause to a stolen BeyondTrust API key. The vendor has acknowledged 17 other customers breached by this flaw. Deeper investigation has revealed that the API key was stolen via a flaw in a PostgreSQL built-in function for escaping untrusted input.

When invalid two-byte UTF-8 characters are submitted to a vulnerable PostgreSQL function, only the first byte is escaped, allowing a single quote to pass through unsanitized which can be leveraged to trigger an SQL Injection [CWE-89] attack. The exploitable functions are PQescapeLiteral(), PQescapeIdentifier(), PQescapeString() und PQescapeStringConn(). All versions of PostgreSQL before 17.3, 16.7, 15.11, 14.16, and 13.19 are affected as well as numerous products that depend on these functions.

CVE-2024-12356, (CVSS 9.8) and CVE-2024-12686, (CVSS 7.2) have been issued for BeyondTrust Privileged Remote Access (PRA) and Remote Support (RS) and CVE-2025-1094 (CVSS 8.1) addresses the flaw in PostgreSQL. The issue is the subject of several national CERT advisories including Germany’s BSI Cert-Bund (WID-SEC-2024-3726) and the Canadian Centre for Cybersecurity (AV25-084). The flaw has been added to CISA’s known exploited vulnerabilities (KEV) list, and a Metasploit module that exploits vulnerable BeyondTrust products is available, increasing the risk. Greenbone is able to detect the CVEs (Common Vulnerabilities and Exposures) discussed above both in BeyondTrust products or instances of PostgreSQL vulnerable to CVE-2025-1094.

Advanced fined 3.1 Million Pound for Lack of Technical Controls

This month, the UK’s Information Commissioner’s Office (ICO) imposed a 3.07 million Pound fine on Advanced Computer Software Group Ltd. under the UK GDPR for security failures. The case is evidence of how the financial damage caused by a ransomware attack can be further exacerbated by regulatory fines. The initial proposed amount was even higher at 6.09 million Pound. However, since the victim exhibited post-incident cooperation with the NCSC (National Cyber Security Centre), NCA (National Crime Agency) and NHS (National Health Service), a voluntary settlement of 3,076,320 Pound was approved. While operational costs and extortion payments have not been publicly disclosed, they likely add between 10 to 20 million Pound to the incident’s total costs.

Advanced is a major IT and software provider to healthcare organizations including the NHS. In August 2022, Advanced was compromised, attackers gained access to its health and care subsidiary resulting in a serious ransomware incident. The breach disrupted critical services including NHS 111 and prevented healthcare staff from accessing personal data on 79,404 individuals, including sensitive care information.

The ICO concluded that Advanced had incomplete MFA coverage, lacked comprehensive vulnerability scanning and had deficient patch management practices at the time of the incident – factors that collectively represented a failure to implement appropriate technical and organizational measures. Organizations processing sensitive data must treat security controls as non-negotiable. Inadequate patch management remains one of the most exploited gaps in modern attack chains.

Double Trouble: Backups Are Critical to Ransomware Mitigation

Backups are an organization’s last defense against ransomware and most sophisticated advanced persistent threat (APT) actors are known to target their victim’s backups. If a victim’s backups are compromised, submission to ransom demands is more likely. In 2025, this could mean multi-million Dollar losses. In March 2025, two new significant threats to backup services were revealed; CVE-2025-23120, a new critical severity flaw in Veeam was disclosed, and campaigns targeting CVE-2024-48248 in NAKIVO Backup & Replication were observed. Identifying affected systems and patching them is therefore an urgent matter.

In October 2024, our threat report alerted about another vulnerability in Veeam (CVE-2024-40711) being used in ransomware attacks. Overall, CVEs in Veeam Backup and Replication have a high conversion rate for active exploitation, PoC (Proof of Concept) exploits, and use in ransomware attacks. Here are the details for both emerging threats:

  • CVE-2024-48248 (CVSS 8.6): Versions of NAKIVO Backup & Replication before 11.0.0.88174 allow unauthorized Remote Code Execution (RCE) via a function called getImageByPath which allows files to be read remotely. This includes database files containing cleartext credentials for each system that NAKIVO connects to and backs up. A full technical description and proof-of-concept is available and this vulnerability is now tracked as actively exploited.
  • CVE-2025-23120 (CVSS 9.9): Attackers with domain user access can trigger deserialization of attacker-controlled data through the .NET Remoting Channel. Veeam attempts to restrict dangerous types via a blacklist, but researchers discovered exploitable classes (xmlFrameworkDs and BackupSummary) not on the list. These extend .NET’s DataSet class – a well-known RCE vector – allowing arbitrary code execution as SYSTEM on the backup server. The flaw is the subject of national CERT alerts globally including HK, CERT.be, and CERT-In. As per Veeam’s advisory, upgrading to version 12.3.1 is the recommended way to mitigate the vulnerability.

Greenbone is able to detect vulnerable NAKIVO and Veeam instances. Our Enterprise Feed has an active check [1] and version check [2] for CVE-2024-48248 in NAKIVO Backup & Replication, and a remote version check [3] for the Veeam flaw.

IngressNightmare: Unauthenticated Takeover in 43% of Kubernetes Clusters

Kubernetes is the most popular enterprise container orchestration tool globally. Its Ingress feature is a networking component that manages external access to services within a cluster, typically HTTP and HTTPS traffic. A vulnerability dubbed IngressNightmare has exposed an estimated 43% of Kubernetes clusters to unauthenticated remote access – approximately 6,500 clusters, including Fortune 500 companies.

The root-cause is excessive default privileges [CWE-250] and unrestricted network accessibility [CWE-284] in the Ingress-NGINX Controller tool, based on NGINX reverse proxy. IngressNightmare allows attackers to gain complete unauthorized control over workloads, APIs or sensitive resources in multi-tenant and production-grade clusters. A full technical analysis is available from the researchers at Wiz, who pointed out that K8 Admission Controllers are directly accessible without authentication by default, presenting an appealing attack surface to hackers.

The full attack trajectory to achieve arbitrary RCE against an affected K8 instance requires exploiting Ingress-NGINX. First, CVE-2025-1974 (CVSS 9.8) to upload a binary payload as the request body. It should be larger than 8kb in size while specifying a Content-Length header larger than the actual content size. This triggers NGINX to store the request body as a file, and the incorrect Content-Length header means the file will not be deleted as the server waits for more data [CWE-459].

The second stage of this attack requires exploiting CVE-2025-1097, CVE-2025-1098, or CVE-2025-24514 (CVSS 8.8). These CVEs all similarly fail to properly sanitize input [CWE-20] submitted to Admission Controllers. Ingress-NGINX converts Ingress objects to configuration files and validates them with the nginx -t command, allowing attackers to execute a limited set of NGINX configuration directives. Researchers found the ssl_engine module can be triggered to load the shared library binary payload uploaded in the first stage. Although exploitation is not trivial and no public PoC code exists yet, sophisticated threat actors will easily convert the technical analysis into effective exploits.

The Canadian Centre for Cyber Security has issued a CERT advisory (AV25-161) for IngressNightmare. Patched Ingress-NGINX versions 1.12.1 and 1.11.5 are available and users should upgrade as soon as possible. If upgrading the Ingress NGINX Controller is not immediately possible, temporary workarounds can help reduce risk. Strict network policies can restrict access to a cluster’s Admission Controllers allowing access to only the Kubernetes API Server. Alternatively, the Admission Controller component of Ingress-NGINX can be disabled entirely.

Greenbone is able to detect IngressNightmare vulnerabilities with an active check that verifies the presence of all CVEs mentioned above [1][2].

CVE-2025-29927: Next.js Framework Under Attack

A new vulnerability in Next.js, CVE-2025-29927 (CVSS 9.4) is considered high risk due the framework’s popularity and the simplicity of exploitation [1][2]. Adding to the risk, PoC exploit code is publicly available and Akamai researchers have observed active scans probing the Internet for vulnerable apps. Several national CERTs (Computer Emergency Response Teams) have issued alerts for the issue including CERT.NZ, Australian Signals Directorate (ASD), Germany’s BSI Cert-Bund (WID-SEC-2025-062), and the Canadian Centre for Cyber Security (AV25-162).

Next.js is a React middleware framework for building full-stack web applications. Middleware refers to components that sit between two or more systems and handle communication and orchestration. For web-applications, middleware converts incoming HTTP requests into responses and is often also responsible for authentication and authorization. Due to CVE-2025-29927, attackers can bypass Next.js middleware authentication and authorization simply by setting a malicious HTTP header.

If using HTTP headers seems like a bad idea for managing a web application’s internal process flow, CVE-2025-29927 is the evidence. Considering user-provided headers were not correctly distinguished from internal ones, this vulnerability should attain the status of egregious negligence. Attackers can bypass authentication by simply adding the `x‑middleware‑subrequest` header to a request and overloading it with at least as many values as the MAX_RECURSION_DEPTH which is 5. For example:

`x-middleware-subrequest: middleware:middleware:middleware:middleware:middleware`

The flaw is fixed in Next.js versions 15.2.3, 14.2.25, 13.5.9 and 12.3.5, and users should follow the vendor’s upgrade guide. If upgrading is infeasible, it is recommended to filter the `x-middleware-subrequest` header from HTTP requests. Greenbone is able to detect vulnerable instances of Next.js with an active check and a version check.

Summary

The March 2025 threat landscape was shaped by vulnerable and actively exploited backup systems, unforgivably weak authentication logic, high-profile regulatory fines and numerous other critical software vulnerabilities. From the U.S. Treasury breach to the Advanced ransomware fallout, the theme is clear: trust doesn’t grow on trees. Cybersecurity resilience must be earned; forged through layered security controls and backed up by accountability.

Greenbone continues to play a vital role by providing timely detection tests for new emerging threats and standardized compliance audits that support a wide array of enterprise architectures. Organizations that want to stay ahead of cyber crime need to proactively scan their infrastructure and close security gaps as they appear.

Vulnerabilities in IT environments appear in different forms. The most common ones are likely software vulnerabilities that have not been patched. Then there are weak passwords, misconfigurations or network switches that have been EOL for five years. However, another type of security gap sometimes causes significant confusion during the scans: hardware vulnerabilities.

We have become accustomed to the continuous emergence of software vulnerabilities, and hopefully, it is now standard practice for every company to regularly scan its network for vulnerabilities and apply patches. Unfortunately, mistakes are not limited to software developers – CPU developers are not immune either. CPU vulnerabilities often arise from design flaws, allowing malicious actors to exploit unintended side effects to access sensitive data. Unlike software vulnerabilities, which can often be resolved through patches or updates, hardware vulnerabilities require either microcode updates or fundamental architectural changes in future processor designs.

Microcode Updates

The only way to mitigate CPU vulnerabilities is by applying microcode updates, which are typically distributed through the operating system or sometimes even through firmware (UEFI/BIOS). Microcode is a low-level software layer within the processor that translates higher-level machine instructions into specific internal operations.

While end users do not traditionally update microcode themselves, manufacturers like Intel provide relevant updates to patch certain vulnerabilities without requiring a full hardware replacement. However, these updates often introduce performance loss, as they disable or modify certain CPU optimizations to prevent exploitation. In some cases, this can even lead to performance reductions of up to 50%.

Flaws on different levels

Since these vulnerabilities exist at the CPU level, tools like the Greenbone Enterprise Appliance detect and report them. However, this can lead to misconceptions, as users might mistakenly believe that the reported vulnerabilities originate from the operating system. It is crucial to understand that these are not OS vulnerabilities; rather, they are architectural flaws in the processor itself. The vulnerabilities are detected by checking for the absence of appropriate microcode patches when an affected CPU is identified. For example, if a scan detects a system that lacks Intel’s microcode update for Downfall, it will be reported as vulnerable. However, this does not mean that the OS itself is insecure or compromised.

Performance or safety?

In the end, mitigating CPU vulnerabilities always involves trade-offs, and users must decide which approach best suits their needs. In principle, there are three options to choose from:

  • Apply microcode updates and accept significant performance degradation in compute-heavy workloads.
  • Forego certain microcode updates and accept the risks if the probability of exploitation is low in their environment.
  • Replace the affected hardware with CPUs that are not vulnerable to these issues.

Ultimately, the decision depends on the specific use case and risk tolerance of the organization or individual responsibles.

With the new elections, the implementation of NIS2 in Germany appears to have been halted for the time being. While other European countries are already ready, German companies will have to wait several more months until legal certainty is established. Everything has actually been said, templates have been drawn up, but the change of government means a new start is necessary.

We spoke to one of the leading experts on NIS2: Dennis-Kenji Kipker is Scientific Director of the cyberintelligence.institute in Frankfurt/Main, professor at the Riga Graduate School of Law and regularly consults as an expert at the German Federal Office for Information Security (BSI) and many other public and scientific institutions.

Why did the German government reject the final NIS2 draft?

Portrait of Prof. Dr. Dennis-Kenji Kipker, expert in IT law and cyber security, in an interview on the implementation of the NIS2 Directive

Prof. Dr. Dennis-Kenji Kipker

Kipker: This is due to the so-called discontinuity principle. Just like with the old government, all unfinished projects must be archived. “Due to the early elections, the parliamentary procedure for the NIS2UmsuCG could not be completed” is the official term. In line with the principle of discontinuity, when a newly elected Bundestag is constituted, all bills not yet passed by the old Bundestag must be reintroduced and renegotiated. This means that the work already done on NIS2 will fall by the wayside. But you can of course build on this and reintroduce almost the same text.

Will that happen?

Kipker: There is an internal 100-day plan from the Federal Ministry of the Interior for the period after the election. According to rumors, cybersecurity is a very high priority in the plan, and NIS2 in particular is now to be implemented very quickly. If this can be implemented before fall/winter 2025 (the actual current schedule), Germany will at least avoid the embarrassment of bringing up the rear in Europe.

Is that realistic?

Kipker: You would have to recycle a lot, i.e. take over things from the last legislative period despite the principle of discontinuity. Now, it seems that the current Ministry of the Interior wants to do just that. Only the politicians and officials directly involved know whether this is realistic. However, 100 days seems very ambitious to me in the Berlin political scene, even if everyone involved pulls together. There would need to be a budget, the current NIS2UmsuCG draft would need to be revised and addressed but also finalized, and the German scope of application of the law would need to be clarified and aligned with EU law. Furthermore, at the end of 2024 and the beginning of 2025, attempts were still being made to push through many things in the Bundestag after the expert hearing on NIS2, some of which are rather questionable. In any case, this would have to be renegotiated politically and evaluated technically.

When do you think this will happen?

Kipker: It’s hard to say, but even if you break the 100-day deadline, it should be feasible to complete a national NIS2 implementation before the winter of 2025/2026. But that’s just a very preliminary assumption that I keep hearing from “usually well-informed circles”. One way or another, we will be at the bottom of the league when it comes to Europe-wide implementation, and all the current ambitions won’t change that.

And what is the situation like in other European countries?

Kipker: A lot is happening right now. It has been recognized, for example, that the different national implementations of NIS2 lead to frictional losses and additional costs for the affected companies – that’s not really surprising. A few weeks ago, the European Union Agency For Cybersecurity (ENISA) published a report that is well worth reading, which explains and evaluates the maturity and criticality of relevant NIS2 sectors in a European comparison. “NIS360 is intended to support Member States and national authorities in identifying gaps and prioritizing resources”, writes the EU cybersecurity authority. And we at cyberintelligence.institute have produced a comprehensive study on behalf of the Swiss company Asea Brown Boveri, which also takes a closer look at the EU-wide implementation of the NIS2 directive.

What key insight did you gain there?

Kipker: The Comparison Report is primarily aimed at transnationally operating companies that are looking for a first point of contact for cybersecurity compliance. Above all, there is a lack of central administrative responsibilities in the sense of a “one-stop store”, and the diverging implementation deadlines are causing problems for companies. As of the end of January, only nine EU states had transposed NIS2 into national law, while the legislative process had not yet been completed in 18 other states. Another key insight: Just because I am NIS2-compliant in one EU member state does not necessarily mean that this also applies to another member state.

So, Germany may not be a pioneer, but it is not lagging behind either?

Kipker: We are definitely not at the forefront, but if we manage to implement it nationally this year, we may not be the last, but we will be among the last. My guess in this respect now is that we won’t have really reliable results until the fourth quarter of 2025. So, it’s going to be close to avoid being left in the red after all. Politicians will have to decide whether this can meet our requirements in terms of cyber security and digital resilience.

Where can affected companies find out about the current status?

Kipker: There are ongoing events and opportunities for participation. On March 18, for example, there will be a BSI information event (in German language) where you can ask about the plans. Then, in May 2025, there will also be the NIS-2 Congress right next door to us in Frankfurt, for which the “most recognized NIS-2 Community Leader” has just been selected. There will certainly be one or two interesting tidbits of information to pick up here. Otherwise, feel free to contact me at any time if you have any questions about NIS2!

Cyber threats are evolving at breakneck speed, but the fundamental weaknesses attackers exploit remain strikingly unchanged. So far in 2025, many analysts have published landscape reviews of 2024 and outlooks for 2025. The cost of cyber breaches is ticking upwards, but overall, cyber breach root-causes have not changed. Phishing [T1566] and exploiting known software vulnerabilities [T1190] continue to top the list. Another key observation is that attackers are weaponizing public information faster, converting CVE (Common Vulnerabilities and Exposures) disclosures into viable exploit code within days or even hours. Once inside a victim’s network, they are executing precision second-stage objectives faster too, deploying ransomware within minutes.

In this month’s edition of the Greenbone Threat Report, we will briefly review the disclosed chats of the Black Basta ransomware group and highlight Greenbone’s coverage of their now exposed techniques. We will also review a report from Greynoise about mass exploitation attacks, a new actively exploited vulnerability in Zimbra Collaboration Suite and new threats to edge networking devices.

The Era of Tectonic Technology

If security crises are like earthquakes, then the global tech ecosystem is the underlying tectonic plates. The global technology ecosystem would be best represented as the Paleozoic Era of geological history. Rapid innovative and competitive market forces are pushing and pulling at the fabric of IT security like the colliding supercontinents of Pangea; continuous earthquakes constantly forcing continental shift.

Entirely new paradigms of computing such as generative AI and quantum computing are creating advantages and risks; volcanoes of value and unstable ground. Global governments and tech giants are wresting for access to citizen’s sensitive personal data, adding gravity. These struggles have significant implications for privacy, security and how society will evolve. Here are some of the major forces destabilizing IT security today:

  • Rapidly evolving technologies are driving innovation, forcing technical change.
  • Organizations are both forced to change as technologies and standards depreciate and motivated to change to remain competitive.
  • Fierce market competition has accelerated product development and release cycles.
  • Strategic planned obsolescence has been normalized as a business strategy for reaping financial gain.
  • Pervasive lack of accountability for software vendors has led to prioritization of performance over “security-first” design principles.
  • Nation-states weaponize technology for Cyber Warfare, Information Warfare and Electronic Warfare.

Due to these forces, well-resourced and well-organized cyber criminals find a virtually unlimited number of security gaps to exploit. The Paleozoic Era lasted 300 million years. Hopefully, we won’t have to wait that long for product vendors to show accountability and employ secure design principles [1][2][3] to prevent so-called “unforgivable” vulnerabilities of negligence [4][5]. The takeaway is that organizations need to develop technical agility and efficient patch management programs. Continuous prioritized vulnerability management is a must.

Black Basta Tactics Revealed: Greenbone Has Coverage

Leaked internal chat logs belonging to Black Basta ransomware group have provided insight into the group’s tactics and inner workings. The logs were leaked by an individual using the alias “ExploitWhispers” who claimed the release was in response to Black Basta’s controversial targeting of Russian banks, allegedly creating internal conflicts within the group. Since its emergence in April 2022, Black Basta has reportedly amassed over $100 million in ransom payments from more than 300 victims worldwide. 62 CVEs referenced in leaked documents reveal the group’s tactics for exploiting known vulnerabilities. Of these 62, Greenbone maintains detection tests for 61, covering 98% of the CVEs.

The Greynoise 2025 Mass Exploitation Report

Mass exploitation attacks are fully automated network attacks against services that are accessible via internet. This month, Greynoise published a comprehensive report summarizing the mass exploitation landscape including the top CVEs attacked by the largest botnets (unique IPs), the most exploited product vendors and top CVEs included in the CISA’s (Cybersecurity and Infrastructure Security Agency) KEV (Known Exploited Vulnerabilities) catalog and exploited by botnets. Greenbone Enterprise Feed has detection tests for 86% of all CVEs (86 total) referenced in the report. When considering only CVEs issued in 2020 or later (66 total), our Enterprise Feed has 90% detection coverage.

Additional findings include:

  • 60% of CVEs exploited in mass exploitation attacks were published in 2020 or later.
  • Attackers are exploiting vulnerabilities within hours of disclosure.
  • 28% of vulnerabilities in CISA KEV are exploited by ransomware threat actors.

Zimbra Collaboration Suite

CVE-2023-34192 (CVSS 9.0) is a high-severity Cross-Site Scripting (XSS) vulnerability in Zimbra Collaboration Suite (ZCS) version 8.8.15. The flaw allows authenticated remote attackers to execute arbitrary code via crafted scripts targeting the `/h/autoSaveDraft` function. CISA added CVE-2023-34192 to its KEV catalog, indicating that it has been actively exploited in real-world attacks. Proof-of-concept (PoC) exploit code is publicly available, allowing low-skilled attackers to join the fray. CVE-2023-34192 has held a very high EPSS since its disclosure in 2023. For defenders leveraging EPSS for remediation prioritization, this indicates a high priority to patch.

Zimbra Collaboration Suite (ZCS) is an open-source office productivity platform that integrates email, calendar, contacts, tasks and collaboration tools but holds a niche market share of less than 1% of all email and messaging platforms.

Living on the Edge: New Critical Networking Device Flaws

In our monthly threat report we have been tracking the persistent threat to edge network devices. Earlier this-month, we reported on a perfect security storm affecting end-of-life (EOL) Zyxel routers and firewalls. In this section we will review new security risks that fall into the “edge networking” category. Greenbone has detection capabilities for all CVEs discussed below.

Chinese Hackers Exploit Palo Alto’s PAN-OS for Ransomware

CVE-2024-0012 (CVSS 9.8), a vulnerability in Palo Alto PAN-OS disclosed last November, is considered one of the most exploited vulnerabilities of 2024. The CVE is also reportedly being used by Chinese state-backed threat actors for ransomware attacks. Another new flaw affecting PAN-OS, CVE-2025-0108 (CVSS 9.1), was just disclosed this month and immediately tagged as actively exploited by CISA. CVE-2025-0108 is an authentication bypass in the management web-interface and can be chained together with CVE-2024-9474 (CVSS 7.2), a separate privilege escalation vulnerability to gain unauthenticated root control over an unpatched PAN-OS device.

SonicWall Patches a Critical Actively Exploited CVE in SonicOS

CVE-2024-53704, a critical severity vulnerability in SonicWall devices, has been recently added to CISA’s KEV list. Astoundingly, CISA lists 8 SonicWall CVEs that are known to be actively exploited in ransomware attacks. CVE-2024-53704 (CVSS 9.8) is an Improper Authentication vulnerability [CWE-287] in the SSLVPN authentication mechanism of SonicWall’s SonicOS versions 7.1.1-7058 and older, 7.1.2-7019, and 8.0.0-8035. It allows remote attackers to bypass authentication and and hijack active SSL VPN sessions, potentially gaining unauthorized network access. A full technical analysis is available from BishopFox. An advisory from SonicWall also names additional high severity CVEs in SonicOS that have been patched along with CVE-2024-53704.

Sophos’ CyberroamOS and EOL XG Firewalls Actively Exploited

Sophos, which acquired Cyberoam in 2014, has issued an alert and patch for CVE-2020-29574. CyberoamOS is part of Sophos’ product ecosystem. Aside from this CVE, Sophos XG Firewall, soon to be EOL, is also the subject of an active exploitation alert.

  • CVE-2020-29574 (CVSS 9.8): A critical SQL injection [CWE-89] vulnerability identified in the WebAdmin interface of CyberoamOS versions up to December 4, 2020. This flaw allows unauthenticated attackers to remotely execute arbitrary SQL statements, potentially gaining complete administrative access to the device. A hotfix patch has been issued, which also extends to some affected end-of-life (EOL) products.
  • CVE-2020-15069 (CVSS 9.8) is a critical Buffer Overflow vulnerability in Sophos XG Firewall versions 17.x through v17.5 MR12, allowing unauthenticated RCE via the HTTP/S Bookmarks feature for clientless access. This vulnerability, published in 2020 is now being actively exploited and has been added to CISA KEV indicating heightened risk. Sophos released an advisory in 2020 when the vulnerability was disclosed, along with a hotfix affected firewalls. The XG Series hardware appliances are soon scheduled to reach end-of-life (EOL) on March 31, 2025.

PrivEsc and Auth Bypasses in Fortinet FortiOS and FortiProxy

Fortinet disclosed two critical vulnerabilities, both affecting FortiOS and FortiProxy. The Canadian Center for Cybersecurity and the Belgian Center for Cybersecurity have issued advisories. Fortinet acknowledges active exploitation of CVE-2024-55591 and has released official guidance that includes details on affected versions and recommended updates. ​

  • CVE-2024-55591 (CVSS 9.8): An Authentication Bypass Using an Alternate Path or Channel vulnerability [CWE-288] affecting FortiOS allows a remote attacker to gain super-admin privileges via crafted requests to Node.js websocket module. Multiple PoC exploits are available [1][2] increasing the risk of exploitation by low-skilled attackers.
  • CVE-2024-40591 (CVSS 8.8): Allows an authenticated administrator with Security Fabric permissions to escalate their privileges to super-admin by connecting the targeted FortiGate device to a malicious upstream FortiGate under their control.

Cisco Flaws Implicated as Initial Access Vectors in Telecom Hacks

In the past few months, China’s Salt Typhoon espionage group has routinely exploited at least two critical vulnerabilities in Cisco IOS XE devices to gain persistent access to telecommunications networks. Victims include Italian ISP, a South African telecom, and a large Thai telecom, and twelve universities worldwide including UCLA, Indonesia’s Universitas Negeri Malang and Mexico’s UNAM among others. Previously, Salt Typhoon had compromised at least nine U.S. telecoms, including Verizon, AT&T and Lumen Technologies. U.S. authorities claim Salt Typhoon’s goal is surveilling high-profile individuals, political figures and officials related to Chinese political interests.

CVEs exploited by Salt Typhoon include:

  • CVE-2023-20198 (CVSS 10): A privilege escalation flaw in Cisco IOS XE’s web interface. Used for initial access, allowing attackers to create an admin account.
  • CVE-2023-20273 (CVSS 7.2): Another privilege escalation flaw, used after gaining admin access to escalate privileges to root and establish a GRE (Generic Routing Encapsulation) tunnel for persistence.

Also, two other CVEs in Cisco products entered the radar in February 2025:

  • CVE-2023-20118 (CVSS 7.2): A command injection vulnerability in the web-based management interface of Cisco Small Business Routers allows authenticated, remote attackers to execute arbitrary commands with root-level privileges by sending crafted HTTP requests. CISA added CVE-2023-20118 to its KEV catalog, indicating evidence of active exploitation.
  • CVE-2023-20026 (CVSS 7.2): A command injection vulnerability in the web-based management interface of Cisco Small Business Routers RV042 Series allows authenticated, remote attackers with valid administrative credentials to execute arbitrary commands on the device. The flaw is due to improper validation of user input within incoming HTTP packets. While CVE-2023-20026 is not known to be exploited in any active campaigns, Cisco’s Product Security Incident Response Team (PSIRT) is aware that PoC exploit code for this vulnerability exists.

Ivanti Patches Four Critical Flaws

Four critical vulnerabilities were identified, affecting Ivanti Connect Secure (ICS), Policy Secure (IPS), and Cloud Services Application (CSA). No reports of active attacks in the wild or PoC exploits have emerged yet. Ivanti advises users to promptly update to the newest versions to address these critical vulnerabilities.

Here is a brief technical summary:

  • CVE-2025-22467 (CVSS 8.8): Attackers with credentials can achieve remote code execution (RCE) due to a stack-based buffer overflow [CWE-121] flaw in ICS versions prior to 22.7R2.6.
  • CVE-2024-38657 (CVSS 9.1): Attackers with credentials can write arbitrary files due to an external control of file name vulnerability in ICS versions before 22.7R2.4 and IPS versions before 22.7R1.3.
  • CVE-2024-10644 (CVSS 9.1): A code injection flaw in ICS (pre-22.7R2.4) and IPS (pre-22.7R1.3), allows arbitrary RCE to authenticated administrators. ​
  • CVE-2024-47908 (CVSS 7.2): An operating system command injection vulnerability [CWE-78] in CSA’s admin web console (versions before 5.0.5), allows arbitrary RCE to authenticated administrators.

Summary

This month’s Threat Report highlights key cybersecurity developments, including the evolving tactics of ransomware groups like Black Basta and the pervasive critical threat to edge network devices. With the support of AI tools, attackers are exploiting vulnerabilities faster-sometimes within hours of disclosure. Organizations must remain vigilant by adopting proactive security measures, continuously updating their defenses and leveraging threat intelligence to stay ahead of emerging threats.

Trimble Cityworks, an enterprise asset management (EAM) and public works management software is actively under attack. The campaign began as an unknown (zero-day) vulnerability, but is now tracked as ​​CVE-2025-0994 with a CVSS of 8.6. The vulnerability is a deserialization flaw [CWE-502] that could allow an authenticated attacker to execute arbitrary code remotely (Remote Code Execution; RCE). Greenbone includes detection for CVE-2025-0994 in the Enterprise Feed.

Active exploitation of CVE-2025-0994 is a real and present danger. Trimble has released a statement acknowledging the attacks against their product. Thanks to the vendor’s transparency, CISA (Cybersecurity and Infrastructure Security Agency) has added CVE-2025-0994 to their catalog of Known Exploited Vulnerabilities (KEV), published an ICS advisory as well as a CSAF 2.0 document. CSAF 2.0 advisories are machine readable advisory documents for decentralized sharing of cybersecurity intelligence.

Although many media reports and some threat platforms indicate that a public proof-of-concept (PoC) exists, the only search result for GitHub is simply a version detection test. This means it is less likely that low-skilled hackers will easily participate in attacks. The misinformation is likely due to poorly designed algorithms combined with lack of human oversight before publishing threat intelligence.

Who Is at Risk due to CVE-2025-0994?

Trimble Cityworks is designed for and used primarily by local governments and critical infrastructure providers including water and wastewater systems, energy, transportation systems, government industrial facilities and communications agencies. Cityworks enhances Geographic Information Systems (GIS) by integrating asset management and public works solutions directly with Esri ArcGIS. The software is meant to help organizations manage infrastructure, schedule maintenance and improve operational efficiency. In addition to CISA, several other government agencies have issued alerts regarding this vulnerability including the US Environment Protection Agency (EPA), the Canadian Centre for Cyber Security and New York State.

Trimble Cityworks has reported serving over 700 customers across North America, Europe, Australia and the Middle East in 2019. While specific numbers for municipal governments in the U.S., Canada and the EU are not publicly disclosed, a Shodan search and Censys map both reveal only about 100 publicly exposed instances of Cityworks. However, the application is considered to have a high adoption rate by local governments and utilities. If publicly exposed, CVE-2025-0994 could offer an attacker initial access [T1190]. For attackers who already have a foothold, the flaw is an opportunity for lateral movement [TA0008] and presents an easy mark for insider attacks.

A Technical Description of CVE-2025-0994

CVE-2025-0994 is a deserialization vulnerability [CWE-502] found in versions of Trimble Cityworks prior to 15.8.9 and Cityworks with Office Companion versions prior to 23.10. The vulnerability arises from the improper deserialization of untrusted serialized data, allowing an authenticated attacker to execute arbitrary code remotely on a target’s Microsoft Internet Information Services (IIS) web server.

Serialization is a process whereby the software code or objects are encoded to be transferred between applications and then reconstructed into the original format used by a programming language. When Trimble Cityworks processes serialized objects, it does not properly validate or sanitize untrusted input. This flaw allows an attacker with authenticated access to send specially crafted serialized objects, which can trigger arbitrary code execution on the underlying IIS server. Deserializing data from unauthenticated sources seems like a significant design flaw in itself, but failing to properly sanitize serialized data is especially poor security.

Exploitation CVE-2025-0994 could lead to:

  • Unauthorized access to sensitive data
  • Service disruption of critical infrastructure systems
  • Potential full system compromise of the affected IIS web server

Mitigating CVE-2025-0994 in Trimble Cityworks

Trimble has released patched versions of Cityworks that address the deserialization vulnerability. These patches include Cityworks 15.8.9 and Cityworks 23.10. On-premise users must immediately upgrade to the patched version, while Cityworks Online (CWOL) customers will receive these updates automatically.

Trimble noted that some on-premise deployments are running IIS with overprivileged identity permissions, which increases the attack surface. IIS should not have local or domain-level administrative privileges. Follow Trimble’s guidance in the latest Cityworks release notes to adjust IIS identity configurations properly.

Users of on-premises Trimble Cityworks should:

  • Update Cityworks 15.x versions to 15.8.9 and 23.x versions to 23.10.
  • Audit IIS identity permissions to ensure that they align with the principle of least privilege.
  • Limit attachment directory root configuration to only folders which only contain attachments.
  • Use a firewall to restrict IIS server access to trusted internal systems only.
  • Use a VPN to allow remote access to Cityworks rather than publicly exposing the service.

Summary

CVE-2025-0994 represents a serious security risk to Trimble Cityworks users, which largely comprise government and critical infrastructure environments. With active exploitation already observed, organizations must prioritize immediate patching and implement security hardening measures to mitigate the risk. Greenbone has added detection for CVE-2025-0994 to the Enterprise Feed, allowing customers to gain visibility into their exposure.

This year, many large organizations around the world will be forced to reckon with the root-cause of cyber intrusions. Many known vulnerabilities are an open gateway to restricted network resources. Our first Threat Report of 2025 reviews some disastrous breaches from 2024 and then dives into some pressing cybersecurity vulnerabilities from this past month.

However, to be clear, the vulnerabilities discussed here merely scratch the surface. In January 2025, over 4,000 new CVEs (Common Vulnerabilities and Exposures) were published; 22 with the maximum CVSS score of 10, and 375 rated critical severity. The deluge of critical severity flaws in edge networking devices has not abated. Newly attacked flaws in products from global tech giants like Microsoft, Apple, Cisco, Fortinet, Palo Alto Networks, Ivanti, Oracle and others have been appended to CISA’s (Cybersecurity and Infrastructure Security Agency) Known Exploited Vulnerabilities (KEV) catalog.

Software Supply Chain: the User’s Responsibility

We are all running software we didn’t design ourselves. This places a huge emphasis on trust. Where trust is uncertain – whether due to fears of poor diligence, malice or human error – cybersecurity responsibility still rests on the end-user. Risk assurances depend heavily on technical knowledge and collective effort. Defenders need to remember these facts in 2025.

When supply chain security fails, ask why! Did the software vendor provide the required tools to take control of your own security outcomes? Is your IT security team executing diligent vulnerability discovery and remediation? Are your resources segmented with strong access controls? Have employees been trained to identify phishing attacks? Are other reasonable cybersecurity measures in place? Organizations need to mature their ransomware-readiness, implement regular vulnerability assessments and prioritized patch management. And they should verify reliable backup strategies can meet recovery targets and prioritize other fundamental security controls to protect sensitive data and prevent downtime.

Fortune Favors the Prepared

Assessing 2024, the UK’s NCSC (National Cyber Security Center) annual review painted a grim picture; significant cyberattacks had increased three times compared to 2023. For a birds-eye view, CSIS (The Center for International Strategic & International Studies) has posted an extensive list of the most significant cyber incidents of 2024. The landscape has been shaped by the Russia Ukraine conflict and an accelerated shift from globalization to adversarialism.

Check Point Research found that 96% of all vulnerabilities exploited in 2024 were over a year old. These are positive findings for proactive defenders. Entities conducting vulnerability management will fare much better against targeted ransomware and mass exploitation attacks. One thing is clear: proactive cybersecurity reduces the cost of a breach.

Let’s review two of the most significant breaches from 2024:

  • The Change Healthcare Breach: Overall in 2024, breaches of healthcare entities were down from 2023’s record setting year. However, the ransomware attack against Change Healthcare set a new record for the number of affected individuals at 190 million, with total costs so far reaching 2,457 billion Dollar. The State of Nebraska has now filed a lawsuit against Change Healthcare for operating outdated IT systems that failed to meet enterprise security standards. According to IBM, breaches in the healthcare industry are the most costly, averaging 9.77 million Dollar in 2024.
  • Typhoon Teams Breach 9 US Telecoms: The “Typhoon” suffix is used by Microsoft’s threat actor naming convention for groups with Chinese origins. The Chinese state-sponsored adversary known as Salt Typhoon infiltrated the networks of at least nine major U.S. telecommunications companies, accessing user’s call and text metadata and audio recordings of high-profile government officials. Volt Typhoon breached Singapore Telecommunications (SingTel) and other telecom operators globally. The “Typhoons” exploited vulnerabilities in outdated network devices, including unpatched Microsoft Exchange Server, Cisco routers, Fortinet and Sophos Firewalls and Ivanti VPN appliances. Greenbone is able to detect all known software vulnerabilities associated with Salt Typhoon and Volt Typhoon attacks [1][2].

UK May Ban Ransomware Payments in Public Sector

The UK government’s framework to combat ransomware has proposed a ban on ransom payments by public sector entities and critical infrastructure operators with hopes to deter cyber criminals from targeting them in the first place. However, a new report from The National Audit Office (NAO), the UK’s independent public spending watchdog, says “cyber threat to UK government is severe and advancing quickly”.

The FBI, CISA and NSA all advise against paying ransoms. After all, paying a ransom does not guarantee the recovery of encrypted data or prevent the public release of stolen data, and may even encourage further extortion. On the flip side IBM’s security think-tank acknowledges that many SME organizations could not fiscally survive the downtime imposed by ransomware. While both sides make points here, could enriching cyber criminals while failing to shore-up local talent result in a positive outcome?

Vulnerability in SonicWall SMA 1000 Actively Exploited

Microsoft Threat Intelligence has uncovered active exploitation of SonicWall SMA 1000 gateways via CVE-2025-23006 (CVSS 9.8 Critical). The flaw is caused by improper handling of untrusted data during deserialization [CWE-502]. It could allow an unauthenticated attacker with access to the internal Appliance Management Console (AMC) or Central Management Console (CMC) interface to execute arbitrary OS commands. SonicWall has released hotfix version 12.4.3-02854 to address the flaw.

While no publicly available exploit code has been identified, numerous government agencies have issued alerts including Germany’s BSI CERT-Bund, Canadian Center for Cybersecurity, CISA, and the UK’s NHS (National Health Service). Greenbone is able to detect SonicWall systems impacted by CVE-2025-23006 by remotely checking the version identified from the service banner.

CVE-2024-44243 for Persistent Rootkit in macOS

January 2025 was a firestorm month for Apple security. Microsoft Threat Intelligence has found time to security test macOS, discovering a vulnerability that could allow installed apps to modify the OS System Integrity Protection (SIP). According to Microsoft, this could allow attackers to install rootkits, persistent malware and bypass Transparency, Consent and Control (TCC) which grants granular access permissions to applications on a per-folder basis. While active exploitation has not been reported, Microsoft has released technical details on their findings.

As January closed, a batch of 88 new CVEs, 17 with critical severity CVSS scores were published affecting the full spectrum of Apple products. One of these, CVE-2025-24085, was observed in active attacks and added to CISA’s KEV catalog. On top of these, dual speculative execution vulnerabilities in Apple’s M-series chips dubbed SLAP and FLOP were disclosed but have not yet been assigned CVEs. For SLAP, researchers leveraged chip flaws to exploit Safari WebKit’s heap allocation techniques and manipulated JavaScript string metadata to enable out-of-bounds speculative reads, allowing them to extract sensitive DOM content from other open website tabs. For FLOP, researchers demonstrated that sensitive data can be stolen from Safari and Google Chrome; bypassing Javascript type checking in Safari WebKit and Chrome’s Site Isolation via WebAssembly.

Furthermore, five high severity vulnerabilities were also published affecting Microsoft Office for macOS. Each potentially forfeiting Remote Code Execution (RCE) to an attacker. Affected products include Microsoft Word (CVE-2025-21363), Excel (CVE-2025-21354 and CVE-2025-21362) and OneNote (CVE-2025-21402) for macOS. While no technical details about these vulnerabilities are yet available, all have high CVSS ratings and users should update as soon as possible.

The Greenbone Enterprise Feed includes detection for missing macOS security updates and many other CVEs affecting applications for macOS including the five newly disclosed CVEs in Microsoft Office for Mac.

6 CVEs in Rsync Allow Both Server and Client Takeover

The combination of two newly discovered vulnerabilities may allow the execution of arbitrary code on vulnerable rsyncd servers while having only anonymous read access. CVE-2024-12084, a heap buffer overflow and CVE-2024-12085, an information leak flaw are the culprits. Public mirrors using rsyncd represent the highest risk since they inherently lack access control.

The researchers also found that a weaponized rsync server can read and write arbitrary files on connected clients. This can allow theft of sensitive information and potentially execution of malicious code by modifying executable files.

Here is a summary of the new flaws ordered by CVSS severity:

Collectively, these flaws present serious risk of RCE, data exfiltration and installing persistent malware on both rsyncd servers and unsuspecting clients. Users must update to the patched version, thoroughly look for any Indicators of Compromise (IoC) on any systems that have used rsync, and potentially redeploy file sharing infrastructure. Greenbone is able to detect all known vulnerabilities in rsync and non-compliance with critical security updates.

CVE-2025-0411: 7-Zip Offers MotW Bypass

On January 25, 2025, CVE-2025-0411 (CVSS 7.5 High) was published affecting 7-Zip archiver. The flaw allows bypassing the Windows security feature Mark of the Web (MotW) via specially crafted archive files. MoTW tags files downloaded from the internet with a Zone Identifier alternate data stream (ADS), warning when they originate from an untrusted source. However, 7-Zip versions before 24.09 do not pass the MotW flag to files within nested archives. Exploiting CVE-2025-0411 to gain control of a victim’s system requires human interaction. Targets must open a trojanized archive and then further execute a malicious file contained within.

Interestingly, research from Cofence found government websites around the world have been leveraged for credential phishing, malware delivery and command-and-control (C2) operations via CVE-2024-25608, a Liferay digital platform vulnerability. This flaw allows attackers to redirect users from trusted .gov URLs to malicious phishing sites. Combining redirection from a trusted .gov domain with the 7-Zip flaw has significant potential for stealthy malware distribution.

Considering the risks, users should manually upgrade to version 24.09, which has been available since late 2024. As discussed in the introduction above, software supply chain security often lies in a grey zone, we all depend on software beyond our control. Notably, prior to the publication of CVE-2025-0411, 7-Zip had not alerted users to a security flaw. Furthermore, although 7-Zip is open-source, the product’s GitHub account does not reveal many details or contact information for responsible disclosure.

Furthermore, the CVE has triggered DFN-CERT and BSI CERT-Bund advisories [1][2]. Greenbone is able to detect the presence of vulnerable versions of 7-Zip.

Summary

This edition of our monthly Threat Report reviewed major breaches from 2024 and newly discovered critical vulnerabilities in January 2025. The software supply chain presents elevated risk to all organizations large and small from both open-source and closed-source products. However, open-source software offers transparency and the opportunity for stakeholders to engage proactively in their own security outcomes, either collectively or independently. While cybersecurity costs are significant, advancing technical capabilities will increasingly be a determinant factor in both enterprise and national security. Fortune favors the prepared.

ITASEC, Italy’s most important conference for cyber security, takes place in Bologna from February 3 to 8, 2025. As a platinum sponsor, Greenbone is sending a strong signal for European cooperation and digital security. This step demonstrates our commitment to a global presence and direct customer interaction.

Street scene in the old town of Bologna with a view of the medieval 'Due Torri' towers, venue of the IT security conference ITASEC 2025

The “Due Torri”, two medieval towers, shape the image of the historic old town of Bologna. (Photo: Markus Feilner, CC-BY 2016)

 

New Perspectives in Italy and Worldwide

“At Greenbone, we are increasingly realizing how important our vulnerability management is for customers throughout Europe and how important it is for these customers to be able to communicate with us directly on site,” explains Chief Marketing Officer Elmar Geese. To meet this demand, Greenbone has established the Italian subsidiary OpenVAS S.R.L. At the same time, Greenbone is expanding into other regions. A new subsidiary in the Netherlands and an increased engagement in the Asian market are on the agenda.

We will not only be present at ITASEC with a booth, but will also contribute to the content: Dirk Boeing, Senior Consultant and cybersecurity expert at Greenbone, will speak on February 6th at 11:00 a.m. on the panel “Security Management in the NIS2 Era”.

Visit Us in Bologna!

The annual ITASEC takes place on the campus of the “Alma Mater Studiorum Università di Bologna”, the oldest university in Europe, which has been writing science history since 1088 – an ideal place for a conference dedicated to security in the digital future. The fair is organized by the CINI Cybersecurity National Lab, with a special focus in 2025 on the topic of security and rights in cyberspace. This is also reflected in the cooperation with the SERICS conference (Security and Rights in the Cyber Space), which is supported by the SERICS foundation as part of the almost 200 billion euro Italian „National Recovery and Resilience Plan“ (NRRP).

ITASEC at the University of Bologna offers an excellent opportunity to experience Greenbone live and learn more about our solutions. And this is just the beginning: in 2025 we will be in Italy, for example, at CyberSec Italia in Rome on March 5 and 6. And from March 18 to 19, Greenbone will be at the „Digitaler Staat“ congress in Berlin, and from March 19 at secIT in Hanover. We look forward to your visit!

In 2024, geopolitical instability, marked by conflicts in Ukraine and the Middle East, emphasized the need for stronger cybersecurity in both the public and private sector. China targeted U.S. defense, utilities, internet providers and transportation, while Russia launched coordinated cyberattacks on U.S. and European nations, seeking to influence public opinion and create discord among Western allies over the Ukrainian war. As 2024 ends, we can look back at a hectic cybersecurity landscape on the edge.

2024 marked another record setting year for CVE (Common Vulnerabilities and Exposures) disclosures. Even if many are so-called “AI Slop” reports [1][2], the sheer volume of published vulnerabilities creates a big haystack. As IT security teams seek to find high-risk needles in a larger haystack, the chance of oversight becomes more prevalent. 2024 was also a record year for ransomware payouts in terms of volume and size, and Denial of Service (DoS) attacks.

It also saw the NIST NVD outage, which affected many organizations around the world including security providers. Greenbone’s CVE scanner is a CPE (Common Platform Enumeration) matching function and has been affected by the NIST NVD outage. However, Greenbone’s primary scanning engine, OpenVAS Scanner, is unaffected. OpenVAS actively interacts directly with services and applications, allowing Greenbone’s engineers to build reliable vulnerability tests using the details from initial CVE reports.

In 2025, fortune will favor organizations that are prepared. Attackers are weaponizing cyber-intelligence faster; average time-to-exploit (TTE) is mere days, even hours. The rise of AI will create new challenges for cybersecurity. Alongside these advancements, traditional threats remain critical for cloud security and software supply chains. Security analysts predict that fundamental networking devices such as VPN gateways, firewalls and other edge devices will continue to be a hot target in 2025.

In this edition of our monthly Threat Report, we review the most pressing vulnerabilities and active exploitation campaigns that emerged in December 2024.

Mitel MiCollab: Zero-Day to Actively Exploited in a Flash

Once vulnerabilities are published, attackers are jumping on them with increased speed. Some vulnerabilities have public proof of concept (PoC) exploit code within hours, leaving defenders with minimal reaction time. In early December, researchers at GreyNoise observed exploitation of Mitel MiCollab the same day that PoC code was published. Mitel MiCollab combines voice, video, messaging, presence and conferencing into one platform. The new vulnerabilities have drawn alerts from the Belgian national Center for Cybersecurity, the Australian Signals Directorate (ASD) and the UK’s National Health Service (NHS) in addition to the American CISA (Cybersecurity and Infrastructure Security Agency). Patching the recent vulnerabilities in MiCollab is considered urgent.

Here are details about the new actively exploited CVEs in Mitel MiCollab:

  • CVE-2024-41713 (CVSS 7.8 High): A path traversal vulnerability in the NuPoint Unified Messaging (NPM) component of Mitel MiCollab allows unauthenticated path traversal by leveraging the “…/” technique in HTTP requests. Exploitation can expose highly sensitive files.
  • CVE-2024-35286 (CVSS 10 Critical): A SQL injection vulnerability has been identified in the NPM component of Mitel MiCollab which could allow a malicious actor to conduct a SQL injection attack.

Since mid-2022, CISA has tracked three additional actively exploited CVEs in Mitel products which are known to be leveraged in ransomware attacks. Greenbone is able to detect endpoints vulnerable to these high severity CVEs with active checks [4][5].

Array Networks SSL VPNs Exploited by Ransomware

CVE-2023-28461 (CVSS 9.8 Critical) is a Remote Code Execution (RCE) vulnerability in Array Networks Array AG Series and vxAG SSL VPN appliances. The devices, touted by the vendor as a preventative measure against ransomware, are now being actively exploited in recent ransomware attacks. Array Networks themselves were breached by the Dark Angels ransomware gang earlier this year [1][2].

According to recent reports, Array Networks holds a significant market share in the Application Delivery Controller (ADC) market. According to the ​​IDC’s WW Quarterly Ethernet Switch Tracker, they are the market leader in India, with a market share of 34.2%. Array Networks has released patches for affected products running ArrayOS AG 9.4.0.481 and earlier versions. The Greenbone Enterprise Feed has included a detection test for CVE-2023-28461 since it was disclosed in late March 2023.

CVE-2024-11667 in Zyxel Firewalls

CVE-2024-11667 (CVSS 9.8 Critical) in Zyxel firewall appliances are being actively exploited in ongoing ransomware attacks. A directory traversal vulnerability in the web management interface could allow an attacker to download or upload files via a maliciously crafted URL. Zyxel Communications is a Taiwanese company specializing in designing and manufacturing networking devices for businesses, service providers and consumers. Reports put Zyxel’s market share at roughly 4.2% of the ICT industry with a diverse global footprint including large Fortune 500 companies.

A defense in depth approach to cybersecurity is especially important in cases such as this. When attackers compromise a networking device such as a firewall, typically they are not immediately granted access to highly sensitive data. However, initial access allows attackers to monitor network traffic and enumerate the victim’s network in search of high value targets.

Zyxel advises updating your device to the latest firmware, temporarily disabling remote access if updates cannot be applied immediately and applying their best practices for securing distributed networks. CVE-2024-11667 affects Zyxel ATP series firmware versions V5.00 through V5.38, USG FLEX series firmware versions V5.00 through V5.38, USG FLEX 50(W) series firmware versions V5.10 through V5.38 and USG20(W)-VPN series firmware versions V5.10 through V5.38. Greenbone can detect the vulnerability CVE-2024-11667 across all affected products.

Critical Flaws in Apache Struts 2

CVE-2024-53677 (CVSS 9.8 Critical), an unrestricted file upload [CWE-434] flaw affecting Apache Struts 2 allows attackers to upload executable files into web-root directories. If a web-shell is uploaded, the flaw may lead to unauthorized Remote Code Execution. Apache Struts is an open-source Java-based web-application framework widely used by the public and private sectors including government agencies, financial institutions and other large organizations [1]. Proof of concept (PoC) exploit code is publicly available, and CVE-2024-53677 is being actively exploited increasing its risk.

The vulnerability was originally tracked as CVE-2023-50164, published in December 2023 [2][3]. However, similarly to a recent flaw in VMware vCenter, the original patch was ineffective resulting in the re-emergence of vulnerability. CVE-2024-53677 affects the FileUploadInterceptor component and thus, applications not using this module are unaffected. Users should update their Struts2 instance to version 6.4.0 or higher and migrate to the new file upload mechanism. Other new critical CVEs in popular open-source software (OSS) from Apache:

The Apache Software Foundation (ASF) follows a structured process across its projects that encourages private reporting and releasing patches prior to public disclosure so patches are available for all CVEs mentioned above. Greenbone is able to detect systems vulnerable to CVE-2024-53677 and other recently disclosed vulnerabilities in ASF Foundation products.

Palo Alto’s Secure DNS Actively Exploited for DoS

CVE-2024-3393 (CVSS 8.7 High) is a DoS (Denial of Service) vulnerability in the DNS Security feature of PAN-OS. The flaw allows an unauthenticated attacker to reboot PA-Series firewalls, VM-Series firewalls, CN-Series firewalls and Prisma Access devices via malicious packets sent through the data plane. By repeatedly triggering this condition, attackers can cause the firewall to enter maintenance mode. CISA has identified CVE-2024-3393 vulnerability as actively exploited and it’s among five other actively exploited vulnerabilities in Palo Alto’s products over only the past two months.

According to the advisory posted by Palo Alto, only devices with a DNS Security License or Advanced DNS Security License and logging enabled are affected. It would be an easy assumption to say that these conditions mean that top-tier enterprise customers are affected. Greenbone is able to detect the presence of devices affected by CVE-2024-3393 with a version detection test.

Microsoft Security in 2024: Who Left the Windows Open?

While it would be unfair to single out Microsoft for providing vulnerable software in 2024, the Redmond BigTech certainly didn’t beat security expectations. A total of 1,119 CVEs were disclosed in Microsoft products in 2024; 53 achieved critical severity (CVSS > 9.0), 43 were added to CISA’s Known Exploited Vulnerabilities (KEV) catalog, and at least four were known vectors for ransomware attacks. Although the comparison is rough, the Linux kernel saw more (3,148) new CVEs but only three were rated critical severity and only three were added to CISA KEV. Here are the details of the new actively exploited CVEs in Microsoft Windows:

  • CVE-2024-35250 (CVSS 7.8 High): A privilege escalation flaw allowing an attacker with local access to a system to gain system-level privileges. The vulnerability was discovered in April 2024, and PoC exploit code appeared online in October.
  • CVE-2024-49138 (CVSS 7.8 High): A heap-based buffer overflow [CWE-122] privilege escalation vulnerability; this time in the Microsoft Windows Common Log File System (CLFS) driver. Although no publicly available exploit exists, security researchers have evidence that this vulnerability can be exploited by crafting a malicious CLFS log to execute privileged commands at the system privilege level.

Detection and mitigation of these new Windows CVEs is critical since they are actively under attack. Both were patched in Microsoft’s December patch release. Greenbone is able to detect CVE-2024-35250 and CVE-2024-49138 as well as all other Microsoft vulnerabilities published as CVEs.

Summary

2024 highlighted the continuously challenging cybersecurity landscape with record-setting vulnerability disclosures, ransomware payouts, DoS attacks and an alarming rise in active exploitations. The rapid weaponization of vulnerabilities emphasizes the need for a continuous vulnerability management strategy and a defense-in-depth approach.

December saw new critical flaws in Mitel, Apache and Microsoft products. More network products: Array Networks VPNs and Zyxel firewalls are now being exploited by ransomware threat actors underscoring the urgency for proactive patching and robust detection measures. As we enter 2025, fortune will favor those prepared; organizations must stay vigilant to mitigate risks in an increasingly hostile cyber landscape.