Tag Archive for: Palo Alto

The world may be entering into a new phase of cyber, and a new technological paradigm. So-called “industry leading” or “enterprise grade” software is perpetually shown to be vulnerable with new critical vulnerabilities exposed and evidence of active exploitation on a weekly basis. Fancy new features keep us engaged but, considering the risk of fast-moving technologies, it’s important to work with organizations that keep things simple, stick to their core competencies and do things right.

In this November 2024’s edition of the Greenbone vulnerability report, we examine some recently released reports from the BSI and CISA to see what government cybersecurity agencies make of the current threat environment, then we follow up with news of the most pressing and actively exploited vulnerabilities in this month. Considering the high degree of risk presented by the current landscape of cybersecurity threats, it’s important to prioritize the fundamentals of IT security – and software design – to avoid building operations on a proverbial house of cards.

BSI Releases Its Annual IT Security Summary for 2024

Policy in the EU continues to rapidly evolve in response to increasing cyber risk. Cybersecurity for all requires cross-border cooperation on many levels. According to the 2024 summary report, the German Federal Office for Information Security (BSI) is focused on harmonizing national specifications with cybersecurity best practices while considering the economic and technical feasibility of new measures. Referred to as the “Europeanisation of Cybersecurity”, European standardisation and Germany’s collaboration with the three European Standardisation Organisations CEN, CENELEC and ETSI promote a risk-based approach to enforcing security best practices among critical infrastructure and providers of virtually all digital products.

Regarding the Cyber Resilience Act (CRA), each member state will have authority to remove non-compliant products from the market and penalise offending vendors. “Important products” (Class I), such as password managers and routers, must follow harmonised European standards (hEN). Regarding NIS2, the BSI received 726 reports representing 141 incidents from critical infrastructure facilities so far in 2024. This includes sectors like healthcare, energy, water, food, IT and telecommunications, financial and insurance services, among others.

The BSI also observed an overall increase in new malware variants and 256% increase in malware exploiting Windows. Reading the full report relays trends in attacker behaviors such as an increase in Bring Your Own Vulnerable Driver (BYOVD) attacks capable of disabling EDR security products. There were also ongoing efforts to sinkhole botnets that contribute to mass exploitation attacks at scale, and the continuing fragmentation of cybercrime activities into initial access brokering and second stage ransomware groups.

How do these observations pertain to Greenbone and vulnerability management in general? While effective vulnerability management and compliance auditing are only one piece of the enterprise cybersecurity puzzle, closing known security gaps and regularly attesting strong security configurations is a critical core competency that all organizations need to master.

CISA’s Most Exploited Vulnerabilities of 2023 Are Revealing

The 2023 Top Routinely Exploited Vulnerabilities report from the Cybersecurity & Infrastructure Security Agency (CISA) observed an increase in exploited zero-day vulnerabilities compared to 2022 and their use in attacks on high-priority targets. Other than zero-days, the report lists the top 47 CVEs (Common Vulnerabilities and Exposures) exploited by attackers. Networking (40%) and productivity software (34%) make up the vast majority of highly targeted CVEs. There is also a strong trend in the type of software flaws most exploited. Mishandling untrusted input accounts for 38% of the most attacked software flaws, while improper authentication and authorization make up 34%. Sadly, considerations for securing these flaws are elementary, covered in application design 101. Also, 90% of the top exploited vulnerabilities in the report are in closed source proprietary products indicating that cyber criminals are not hindered by reverse engineering barriers.

While the EU is motivated to improve security via legal requirements, CISA continues its plea for software vendors to employ Secure by Design principles during development stages. They also suggest that more pay-to-hack bug bounty programs could incentivize ethical security researchers.

Multiple Critical Flaws in Palo Alto Products Attacked

On November 8, 2024, Palo Alto Networks issued a security advisory revealing a zero-day remote code execution (RCE) vulnerability affecting its PAN-OS operating system. The advisory was soon updated after evidence of active exploitation emerged. Here is a summary of new vulnerabilities in Palo Alto products disclosed in November 2024.

  • CVE-2024-0012 (CVSS 9.8 High): An authentication bypass in PAN-OS allows unauthenticated access to administrator privileges. Attackers may perform administrative actions, tamper with the configuration, or exploit other authenticated privilege escalation vulnerabilities like CVE-2024-9474.
  • CVE-2024-9474 (CVSS 7.2 High): A privilege escalation vulnerability in PAN-OS software allows PAN-OS administrators to perform actions on the firewall with root privileges.
  • CVE-2024-9463 (CVSS 7.5 High): An OS command injection vulnerability in Expedition allows an unauthenticated attacker to run arbitrary OS commands as root. This allows unauthorized disclosure of usernames, cleartext passwords, device configurations and device API keys of PAN-OS firewalls.
  • CVE-2024-9465 (CVSS 9.1 High): SQL injection could allow an unauthenticated attacker to reveal Expedition database contents, such as password hashes, usernames, device configurations and device API keys, or create and read arbitrary files on the Expedition system.
  • CVE-2024-5910 (CVSS 9.8 High): Missing authentication for a critical function in Expedition can lead to admin account takeover remotely and expose configuration secrets, credentials and other data.

Greenbone is able to detect all new CVEs published in Palo Alto devices in November 2024. Ideally, ensure networking management interfaces are not accessible via the public Internet and for best practices, use firewall configuration to prevent access from unauthorized internal network endpoints.

US Critical Telecom Infrastructure Breached

The recent breaches involving major US telecom providers serves as a stark warning to all organizations operating complex IT infrastructure at scale. Blame has been laid on Chinese backed hacking groups who reportedly used the access to intercepted U.S. political officials’ calls, SMS text-messages and intercepted mobile metadata. According to Adam Meyers, vice president of intelligence at CrowdStrike, by compromising the telecoms directly, threat actors circumvent the need for breaching the individual networks of their targets. Considering the sheer number of critical vulnerabilities in products from US networking vendors such as Palo Alto Networks, Oracle, Cisco, Citrix, Ivanti, Broadcom, Microsoft and Fortinet more intensive application security testing would greatly reduce the risk to their core customers – US companies at home and abroad, and other large global firms.

Liminal Panda, Salt Typhoon, Volt Typhoon and others are known to attack “shadow IT” – legacy mobile protocols that IT administrators are not aware is still active or actively monitoring. Sophisticated, highly skilled APT actors are highly adaptable and have the resources to develop malware for virtually any known vulnerability that is exploitable, as well as actively develop zero-day exploits yet unknown.

5 Privilege Escalation Flaws Found in Ubuntu’s Needrestart

A flaw in Ubuntu’s Needrestart feature could allow an unprivileged local attacker to execute shell commands as root user. The new CVEs impact all versions of Needrestart going back to 2014. Needrestart determines whether any processes need to be restarted after systemwide packages are updated to avoid a full reboot and is invoked by the apt package manager. The vulnerability is caused when untrusted data such as environment variables are passed unsanitized to the Module::ScanDeps library which executes as root. These user-level environment variables can also influence Python and Ruby interpreters during Needrestart’s execution.

The vulnerabilities can be mitigated by updating Needstart to a patched version or by disabling the interpreter scanning feature by setting $nrconf{interpscan} = 0 in the needrestart.conf configuration file. Greenbone includes detection for all CVEs related to Needrestart feature [1][2][3].

Here is a brief description the newly disclosed CVEs:

  • CVE-2024-11003 (CVSS 7.8 High): Unsanitized data passed to the Module::ScanDeps library could allow a local attacker to execute arbitrary shell commands.
  • CVE-2024-10224 (CVSS 5.3): Unsanitized input passed to the Module::ScanDepscan library allows execution of arbitrary shell commands by opening a “pesky pipe” (such as passing “commands|” as a filename) or by passing arbitrary strings to eval().
  • CVE-2024-48990 (CVSS 7.8 High): Allows local attackers to execute arbitrary code as root by tricking Needrestart into running the Python interpreter via the PYTHONPATH environment variable.
  • CVE-2024-48991 (CVSS 7.8 High): Allows local attackers to execute arbitrary code as root by winning a race condition and pointing Needrestart to a fake Python interpreter instead of the system’s real Python interpreter.
  • CVE-2024-48992 (CVSS 7.8 High): Allows local attackers to execute arbitrary code as root by tricking needrestart into running the Ruby interpreter via the RUBYLIB environment variable.

Is Third Time the Charm for VMware vCenter Critical RCE Flaws?

VMware has been grappling with the challenge of effectively patching critical vulnerabilities in its vCenter server products. Broadcom, which owns VMware, initially released patches in September for two significant vulnerabilities in vCenter, CVE-2024-38812 (CVSS 9.8 High) classified as a heap-overflow vulnerability in the implementation of the DCERPC protocol, and CVE-2024-38813 (CVSS 9.8 High) which offers privilege escalation via ​​specially crafted network packets.

However, these initial patches were insufficient, prompting a second round of patches in October. Despite these efforts, it was confirmed in November that the CVEs were still vulnerable and had been exploited in the wild. vCenter is a prime target for attackers due to its widespread use, and the situation highlights ongoing security challenges. VMware users should apply patches promptly. When CVEs such as these in VMware vCenter are updated with new information, Greenbone’s team of security analysts reviews the changes and updates our vulnerability tests accordingly.

Helldown Ransomware Exploiting Zyxel and Its Customers

In November 2024, a Linux variant of the Helldown ransomware payload was discovered. Helldown is known to exploit the IPSec VPN of Zyxel devices via CVE-2024-42057 (CVSS 8.1 High) for initial access. After gaining a foothold, Helldown steals any accessible credentials and creates new users and VPN tunnels to maintain persistence. The new variant targets VMware ESXi virtual machines to exfiltrate their data and encrypt them. This technique is shared by other ransomware groups such as the Play gang.

The Helldown ransomware group is considered an emerging threat, claiming over 30 victims since August, including the maker of Zyxel products themselves. Zyxel has issued an article acknowledging the attacks with mitigation instructions and Truesec has published known Helldown TTP (Tactics Techniques and Procedures) from their response efforts. Greenbone is able to detect all vulnerabilities known to be associated with Helldown ransomware attacks including CVE-2024-42057 in Zyxel products [1][2][3] as well as known software vulnerabilities used by other ransomware threat actors to gain initial access, escalate privileges and move laterally to high value targets within the victim’s network.

Summary

From EU policy advancements to CISA’s insights on exploited vulnerabilities: the critical need for better software development practices, effective vulnerability management and defense in depth is evident. November’s events, such as Palo Alto’s zero-days, Ubuntu’s Needrestart flaws and VMware vCenter’s ongoing challenges, emphasize the importance of timely monitoring and patching of critical infrastructure. Emerging threats like Helldown ransomware reinforce the need for proactive defense strategies. Greenbone continues to support organizations by detecting critical vulnerabilities, providing actionable insights and advocating for a security-first approach with fundamental IT security best practices.

October was European Cyber Security Month (ECSM) and International Cybersecurity Awareness month with the latter’s theme being “Secure Our World”. It’s safe to say that instilling best practices for online safety to individuals, businesses and critical infrastructure is mission critical in 2024. At Greenbone, in addition to our Enterprise vulnerability management products, we are happy to make enterprise grade IT security tools more accessible via our free Community Edition, Community Portal and vibrant Community Forum to discuss development, features and get support.

Our core message to cybersecurity decision makers is clear: To patch or not to patch isn’t a question. How to identify vulnerabilities and misconfigurations before an attacker can exploit them is. Being proactive is imperative; once identified, vulnerabilities must be prioritized and fixed. While alerts to active exploitation can support prioritization, waiting to act is unacceptable in high risk scenarios. Key performance indicators can help security teams and executive decision makers track progress quantitatively and highlight areas that need improvement.

In this month’s Threat Tracking blog post, we will review this year’s ransomware landscape including the root causes of ransomware attacks and replay some of the top cyber threats that emerged in October 2024.

International Efforts to Combat Ransomware Continue

The International Counter Ransomware Initiative (CRI), consisting of 68 countries and organizations (notably lacking Russia and China), convened in Washington, D.C., to improve ransomware resilience globally. The CRI aims to reduce global ransomware payments, improve incident reporting frameworks, strengthen partnerships with the cyber insurance industry to lessen the impact of ransomware incidents, and enhance resilience by establishing standards and best practices for both preventing and recovering from ransomware attacks.

Microsoft’s Digital Defense Report 2024 found the rate of attacks has increased so far in 2024, yet fewer breaches are reaching the encryption phase. The result is fewer victims paying ransom overall. Findings from Coveware, Kaseya, and the Chainanalysis blockchain monitoring firm also affirm lower rates of payout. Still, ransomware gangs are seeing record profits; more than 459 million US-Dollar were extorted during the first half of 2024. This year also saw a new single incident high; a 75 million US-Dollar extortion payout amid a trend towards “big game hunting” – targeting large firms rather than small and medium sized enterprises (SMEs).

What Is the Root Cause of Ransomware?

How are successful ransomware attacks succeeding in the first place? Root cause analyses can help: A 2024 Statista survey of organizations worldwide reports exploited software vulnerabilities are the leading root cause of successful ransomware attacks, implicated in 32% of successful attacks. The same survey ranked credential compromise the second-most common cause and malicious email (malspam and phishing attacks) third. Security experts from Symantec claim that exploitation of known vulnerabilities in public facing applications has become the primary initial access vector in ransomware attacks. Likewise, KnowBe4, a security awareness provider, ranked social engineering and unpatched software as the top root causes of ransomware.

These findings bring us back to our core message and highlight the importance of Greenbone’s industry leading core competency: helping defenders identify vulnerabilities lurking in their IT infrastructure so they can fix and close exploitable security gaps.

FortiJump: an Actively Exploited CVE in FortiManager

In late October 2024, Fortinet alerted its customers to a critical severity RCE vulnerability in FortiManager, the company’s flagship network security management solution. Dubbed “FortiJump” and tracked as CVE-2024-47575 (CVSS 9.8), the vulnerability is classified as “Missing Authentication for Critical Function” [CWE-306] in FortiManager’s fgfm daemon. Google’s Mandiant has retroactively searched logs and confirmed this vulnerability has been actively exploited since June 2024 and describes the situation as a mass exploitation scenario.

Another actively exploited vulnerability in Fortinet products, CVE-2024-23113 (CVSS 9.8) was also added to CISA’s KEV catalog during October. This time the culprit is an externally-controlled format string in FortiOS that could allow an attacker to execute unauthorized commands via specially crafted packets.

Greenbone is able to detect devices vulnerable to FortiJump, FortiOS devices susceptible to CVE-2024-23113 [1][2][3], and over 600 other flaws in Fortinet products.

Iranian Cyber Actors Serving Ransomware Threats

The FBI, CISA, NSA and other US and international security agencies issued a joint advisory warning of an ongoing Iranian-backed campaign targeting critical infrastructure networks particularly in healthcare, government, IT, engineering and energy sectors. Associated threat groups are attributed with ransomware attacks that primarily gain initial access by exploiting public facing services [T1190] such as VPNs. Other techniques used in the campaign include brute force attacks [T1110], password spraying [T1110.003], and MFA fatigue attacks.

The campaign is associated with exploitation of the following CVEs:

Greenbone can detect all CVEs referenced in the campaign advisories, providing defenders with visibility and the opportunity to mitigate risk. Furthermore, while not tracked as a CVE, preventing brute force and password spraying attacks is cybersecurity 101. While many authentication services do not natively offer brute force protection, add-on security products can be configured to impose a lockout time after repeated login failures. Greenbone can attest compliance with CIS security controls for Microsoft RDP including those that prevent brute-force and password spraying login attacks.

Finally, according to the EU’s Cyber Resilience Act’s (CRA), Annex I, Part I (2)(d), products with digital elements must “ensure protection from unauthorized access by appropriate control mechanisms”, including systems for authentication, identity and access management, and should also report any instances of unauthorized access. This implies that going forward the EU will eventually require all products to have built-in brute force protection rather than relying on third-party rate limiting tools such as fail2ban for Linux.

Unencrypted Cookies in F5 BIG-IP LTM Actively Exploited

CISA has observed that cyber threat actors are exploiting unencrypted persistent cookies on F5 BIG-IP Local Traffic Manager (LTM) systems. Once stolen, the cookies are used to identify other internal network devices which can further allow passive detection of vulnerabilities within a network. Similar to most web-applications, BIG-IP passes an  HTTP cookie between the client and server to track user sessions. The cookie, by default, is named BIGipServer<pool_name> and its value contains the encoded IP address and port of the destination server.

F5 BIG-IP is a network traffic management suite and LTM is the core module that provides load balancing and traffic distribution across servers. CISA advises organizations to ensure persistent cookies are encrypted. F5 offers guidance for setting up cookie encryption and a diagnostic tool, BIG-IP iHealth to detect unencrypted cookie persistence profiles.

While active exploitation increases the threat to organizations who have not remediated this weakness, the vulnerability has been known since early 2018.  Greenbone has included detection for this weakness since January 2018, allowing users to identify and close the security gap presented by unencrypted cookies in F5 BIG-IP LTM since its disclosure.

New High Risk Vulnerabilities in Palo Alto Expedition

Several new high risk vulnerabilities have been disclosed in Palo Alto’s Expedition, a migration tool designed to streamline the transition from third-party security configurations to Palo Alto’s PAN-OS. While not observed in active campaigns yet, two of the nine total CVEs assigned to Palo Alto in October were rated with EPSS scores in the top 98th percentile.  EPSS (Exploit Prediction Scoring System) is a machine learning prediction model that estimates the likelihood of a CVE being exploited in the wild within 30 days from the model prediction.

Here is a brief technical description of each CVE:

  • CVE-2024-9463 (CVSS 7.5, EPSS 91.34%): An OS command injection vulnerability in Palo Alto’s Expedition allows an unauthenticated attacker to run arbitrary OS commands as root in Expedition, resulting in disclosure of usernames, cleartext passwords, device configurations and device API keys of PAN-OS firewalls.
  • CVE-2024-9465 (CVSS 9.1, EPSS 73.86%): An SQL injection vulnerability in Palo Alto Networks Expedition allows an unauthenticated attacker to reveal sensitive database contents, such as password hashes, usernames, device configurations and device API keys. Once this information has been obtained, attackers can create and read arbitrary files on affected systems.

Four Critical CVEs in Mozilla Firefox: One Actively Exploited

As mentioned before on our Threat Tracking blog, browser security is critical for preventing initial access, especially for workstation devices. In October 2024, seven new critical severity and 19 other less critical vulnerabilities were disclosed in Mozilla Firefox < 131.0 and Thunderbird < 131.0.1. One of these, CVE-2024-9680, was observed being actively exploited against Tor network users and added to CISA’s known exploited catalog. Greenbone includes vulnerability tests to identify all affected Mozilla products.

The seven new critical severity disclosures are:

  • CVE-2024-9680 (CVSS 9.8): Attackers achieved unauthorized RCE in the content process by exploiting a Use-After-Free in Animation timelines. CVE-2024-9680 is being exploited in the wild.
  • CVE-2024-10468 (CVSS 9.8): Potential race conditions in IndexedDB allows memory corruption, leading to a potentially exploitable crash.
  • CVE-2024-9392 (CVSS 9.8): A compromised content process enables arbitrary loading of cross-origin pages.
  • CVE-2024-10467, CVE-2024-9401 and CVE-2024-9402 (CVSS 9.8): Memory safety bugs present in Firefox showed evidence of memory corruption. Security researchers presume that with enough effort some of these could have been exploited to run arbitrary code.
  • CVE-2024-10004 (CVSS 9.1): Opening an external link to an HTTP website when Firefox iOS was previously closed and had an HTTPS tab open could result in the padlock icon showing an HTTPS indicator incorrectly.

Summary

Our monthly Threat Tracking blog covers major cybersecurity trends and high-risk threats. Key insights for October 2024 include expanded efforts to counter ransomware internationally and the role proactive vulnerability management plays in preventing successful ransomware attacks. Other highlights include Fortinet and Palo Alto vulnerabilities actively exploited and updates on an Iranian-backed cyber attack campaign targeting public-facing services of critical infrastructure sector entities. Additionally, F5 BIG-IP LTM’s unencrypted cookie vulnerability, exploited for reconnaissance, and four new Mozilla Firefox vulnerabilities, one actively weaponized, underscore the need for vigilance.

Greenbone facilitates identification and remediation of these vulnerabilities and more, helping organizations enhance resilience against evolving cyber threats. Prioritizing rapid detection and timely patching remains crucial for mitigating risk.