Tag Archive for: threat analysis

When it comes to protecting your organization from digital threats, who should you trust? Reality dictates that high-resilience IT security is forged from a network of strong partnerships, defense in depth; layered security controls, and regular auditing. Defensive posture needs to be monitored, measured and continuously improved. While vulnerability management has always been a core security control, it is nonetheless a fast moving target. In 2025, continuous and prioritized mitigation of security threats can have a big impact on security outcomes as adversarial time-to-exploit diminishes.

In March 2025’s monthly Threat Report, we will highlight the importance of vulnerability management and Greenbone’s industry leading vulnerability detection by reviewing the most recent critical threats. But these new threats only scratch the surface. In March 2025, Greenbone added 5,283 new vulnerability tests to our Enterprise Feed. Let’s jump into some of the important insights from a highly active threat landscape.

The US Treasury Breach: How Did It Happen?

In late December 2024, the U.S. Treasury Department disclosed that its network was breached by Chinese state-backed hackers and subsequently leveraged sanctions in early January 2025. Forensic investigations have tracked the root-cause to a stolen BeyondTrust API key. The vendor has acknowledged 17 other customers breached by this flaw. Deeper investigation has revealed that the API key was stolen via a flaw in a PostgreSQL built-in function for escaping untrusted input.

When invalid two-byte UTF-8 characters are submitted to a vulnerable PostgreSQL function, only the first byte is escaped, allowing a single quote to pass through unsanitized which can be leveraged to trigger an SQL Injection [CWE-89] attack. The exploitable functions are PQescapeLiteral(), PQescapeIdentifier(), PQescapeString() und PQescapeStringConn(). All versions of PostgreSQL before 17.3, 16.7, 15.11, 14.16, and 13.19 are affected as well as numerous products that depend on these functions.

CVE-2024-12356, (CVSS 9.8) and CVE-2024-12686, (CVSS 7.2) have been issued for BeyondTrust Privileged Remote Access (PRA) and Remote Support (RS) and CVE-2025-1094 (CVSS 8.1) addresses the flaw in PostgreSQL. The issue is the subject of several national CERT advisories including Germany’s BSI Cert-Bund (WID-SEC-2024-3726) and the Canadian Centre for Cybersecurity (AV25-084). The flaw has been added to CISA’s known exploited vulnerabilities (KEV) list, and a Metasploit module that exploits vulnerable BeyondTrust products is available, increasing the risk. Greenbone is able to detect the CVEs (Common Vulnerabilities and Exposures) discussed above both in BeyondTrust products or instances of PostgreSQL vulnerable to CVE-2025-1094.

Advanced fined 3.1 Million Pound for Lack of Technical Controls

This month, the UK’s Information Commissioner’s Office (ICO) imposed a 3.07 million Pound fine on Advanced Computer Software Group Ltd. under the UK GDPR for security failures. The case is evidence of how the financial damage caused by a ransomware attack can be further exacerbated by regulatory fines. The initial proposed amount was even higher at 6.09 million Pound. However, since the victim exhibited post-incident cooperation with the NCSC (National Cyber Security Centre), NCA (National Crime Agency) and NHS (National Health Service), a voluntary settlement of 3,076,320 Pound was approved. While operational costs and extortion payments have not been publicly disclosed, they likely add between 10 to 20 million Pound to the incident’s total costs.

Advanced is a major IT and software provider to healthcare organizations including the NHS. In August 2022, Advanced was compromised, attackers gained access to its health and care subsidiary resulting in a serious ransomware incident. The breach disrupted critical services including NHS 111 and prevented healthcare staff from accessing personal data on 79,404 individuals, including sensitive care information.

The ICO concluded that Advanced had incomplete MFA coverage, lacked comprehensive vulnerability scanning and had deficient patch management practices at the time of the incident – factors that collectively represented a failure to implement appropriate technical and organizational measures. Organizations processing sensitive data must treat security controls as non-negotiable. Inadequate patch management remains one of the most exploited gaps in modern attack chains.

Double Trouble: Backups Are Critical to Ransomware Mitigation

Backups are an organization’s last defense against ransomware and most sophisticated advanced persistent threat (APT) actors are known to target their victim’s backups. If a victim’s backups are compromised, submission to ransom demands is more likely. In 2025, this could mean multi-million Dollar losses. In March 2025, two new significant threats to backup services were revealed; CVE-2025-23120, a new critical severity flaw in Veeam was disclosed, and campaigns targeting CVE-2024-48248 in NAKIVO Backup & Replication were observed. Identifying affected systems and patching them is therefore an urgent matter.

In October 2024, our threat report alerted about another vulnerability in Veeam (CVE-2024-40711) being used in ransomware attacks. Overall, CVEs in Veeam Backup and Replication have a high conversion rate for active exploitation, PoC (Proof of Concept) exploits, and use in ransomware attacks. Here are the details for both emerging threats:

  • CVE-2024-48248 (CVSS 8.6): Versions of NAKIVO Backup & Replication before 11.0.0.88174 allow unauthorized Remote Code Execution (RCE) via a function called getImageByPath which allows files to be read remotely. This includes database files containing cleartext credentials for each system that NAKIVO connects to and backs up. A full technical description and proof-of-concept is available and this vulnerability is now tracked as actively exploited.
  • CVE-2025-23120 (CVSS 9.9): Attackers with domain user access can trigger deserialization of attacker-controlled data through the .NET Remoting Channel. Veeam attempts to restrict dangerous types via a blacklist, but researchers discovered exploitable classes (xmlFrameworkDs and BackupSummary) not on the list. These extend .NET’s DataSet class – a well-known RCE vector – allowing arbitrary code execution as SYSTEM on the backup server. The flaw is the subject of national CERT alerts globally including HK, CERT.be, and CERT-In. As per Veeam’s advisory, upgrading to version 12.3.1 is the recommended way to mitigate the vulnerability.

Greenbone is able to detect vulnerable NAKIVO and Veeam instances. Our Enterprise Feed has an active check [1] and version check [2] for CVE-2024-48248 in NAKIVO Backup & Replication, and a remote version check [3] for the Veeam flaw.

IngressNightmare: Unauthenticated Takeover in 43% of Kubernetes Clusters

Kubernetes is the most popular enterprise container orchestration tool globally. Its Ingress feature is a networking component that manages external access to services within a cluster, typically HTTP and HTTPS traffic. A vulnerability dubbed IngressNightmare has exposed an estimated 43% of Kubernetes clusters to unauthenticated remote access – approximately 6,500 clusters, including Fortune 500 companies.

The root-cause is excessive default privileges [CWE-250] and unrestricted network accessibility [CWE-284] in the Ingress-NGINX Controller tool, based on NGINX reverse proxy. IngressNightmare allows attackers to gain complete unauthorized control over workloads, APIs or sensitive resources in multi-tenant and production-grade clusters. A full technical analysis is available from the researchers at Wiz, who pointed out that K8 Admission Controllers are directly accessible without authentication by default, presenting an appealing attack surface to hackers.

The full attack trajectory to achieve arbitrary RCE against an affected K8 instance requires exploiting Ingress-NGINX. First, CVE-2025-1974 (CVSS 9.8) to upload a binary payload as the request body. It should be larger than 8kb in size while specifying a Content-Length header larger than the actual content size. This triggers NGINX to store the request body as a file, and the incorrect Content-Length header means the file will not be deleted as the server waits for more data [CWE-459].

The second stage of this attack requires exploiting CVE-2025-1097, CVE-2025-1098, or CVE-2025-24514 (CVSS 8.8). These CVEs all similarly fail to properly sanitize input [CWE-20] submitted to Admission Controllers. Ingress-NGINX converts Ingress objects to configuration files and validates them with the nginx -t command, allowing attackers to execute a limited set of NGINX configuration directives. Researchers found the ssl_engine module can be triggered to load the shared library binary payload uploaded in the first stage. Although exploitation is not trivial and no public PoC code exists yet, sophisticated threat actors will easily convert the technical analysis into effective exploits.

The Canadian Centre for Cyber Security has issued a CERT advisory (AV25-161) for IngressNightmare. Patched Ingress-NGINX versions 1.12.1 and 1.11.5 are available and users should upgrade as soon as possible. If upgrading the Ingress NGINX Controller is not immediately possible, temporary workarounds can help reduce risk. Strict network policies can restrict access to a cluster’s Admission Controllers allowing access to only the Kubernetes API Server. Alternatively, the Admission Controller component of Ingress-NGINX can be disabled entirely.

Greenbone is able to detect IngressNightmare vulnerabilities with an active check that verifies the presence of all CVEs mentioned above [1][2].

CVE-2025-29927: Next.js Framework Under Attack

A new vulnerability in Next.js, CVE-2025-29927 (CVSS 9.4) is considered high risk due the framework’s popularity and the simplicity of exploitation [1][2]. Adding to the risk, PoC exploit code is publicly available and Akamai researchers have observed active scans probing the Internet for vulnerable apps. Several national CERTs (Computer Emergency Response Teams) have issued alerts for the issue including CERT.NZ, Australian Signals Directorate (ASD), Germany’s BSI Cert-Bund (WID-SEC-2025-062), and the Canadian Centre for Cyber Security (AV25-162).

Next.js is a React middleware framework for building full-stack web applications. Middleware refers to components that sit between two or more systems and handle communication and orchestration. For web-applications, middleware converts incoming HTTP requests into responses and is often also responsible for authentication and authorization. Due to CVE-2025-29927, attackers can bypass Next.js middleware authentication and authorization simply by setting a malicious HTTP header.

If using HTTP headers seems like a bad idea for managing a web application’s internal process flow, CVE-2025-29927 is the evidence. Considering user-provided headers were not correctly distinguished from internal ones, this vulnerability should attain the status of egregious negligence. Attackers can bypass authentication by simply adding the `x‑middleware‑subrequest` header to a request and overloading it with at least as many values as the MAX_RECURSION_DEPTH which is 5. For example:

`x-middleware-subrequest: middleware:middleware:middleware:middleware:middleware`

The flaw is fixed in Next.js versions 15.2.3, 14.2.25, 13.5.9 and 12.3.5, and users should follow the vendor’s upgrade guide. If upgrading is infeasible, it is recommended to filter the `x-middleware-subrequest` header from HTTP requests. Greenbone is able to detect vulnerable instances of Next.js with an active check and a version check.

Summary

The March 2025 threat landscape was shaped by vulnerable and actively exploited backup systems, unforgivably weak authentication logic, high-profile regulatory fines and numerous other critical software vulnerabilities. From the U.S. Treasury breach to the Advanced ransomware fallout, the theme is clear: trust doesn’t grow on trees. Cybersecurity resilience must be earned; forged through layered security controls and backed up by accountability.

Greenbone continues to play a vital role by providing timely detection tests for new emerging threats and standardized compliance audits that support a wide array of enterprise architectures. Organizations that want to stay ahead of cyber crime need to proactively scan their infrastructure and close security gaps as they appear.

Cyber threats are evolving at breakneck speed, but the fundamental weaknesses attackers exploit remain strikingly unchanged. So far in 2025, many analysts have published landscape reviews of 2024 and outlooks for 2025. The cost of cyber breaches is ticking upwards, but overall, cyber breach root-causes have not changed. Phishing [T1566] and exploiting known software vulnerabilities [T1190] continue to top the list. Another key observation is that attackers are weaponizing public information faster, converting CVE (Common Vulnerabilities and Exposures) disclosures into viable exploit code within days or even hours. Once inside a victim’s network, they are executing precision second-stage objectives faster too, deploying ransomware within minutes.

In this month’s edition of the Greenbone Threat Report, we will briefly review the disclosed chats of the Black Basta ransomware group and highlight Greenbone’s coverage of their now exposed techniques. We will also review a report from Greynoise about mass exploitation attacks, a new actively exploited vulnerability in Zimbra Collaboration Suite and new threats to edge networking devices.

The Era of Tectonic Technology

If security crises are like earthquakes, then the global tech ecosystem is the underlying tectonic plates. The global technology ecosystem would be best represented as the Paleozoic Era of geological history. Rapid innovative and competitive market forces are pushing and pulling at the fabric of IT security like the colliding supercontinents of Pangea; continuous earthquakes constantly forcing continental shift.

Entirely new paradigms of computing such as generative AI and quantum computing are creating advantages and risks; volcanoes of value and unstable ground. Global governments and tech giants are wresting for access to citizen’s sensitive personal data, adding gravity. These struggles have significant implications for privacy, security and how society will evolve. Here are some of the major forces destabilizing IT security today:

  • Rapidly evolving technologies are driving innovation, forcing technical change.
  • Organizations are both forced to change as technologies and standards depreciate and motivated to change to remain competitive.
  • Fierce market competition has accelerated product development and release cycles.
  • Strategic planned obsolescence has been normalized as a business strategy for reaping financial gain.
  • Pervasive lack of accountability for software vendors has led to prioritization of performance over “security-first” design principles.
  • Nation-states weaponize technology for Cyber Warfare, Information Warfare and Electronic Warfare.

Due to these forces, well-resourced and well-organized cyber criminals find a virtually unlimited number of security gaps to exploit. The Paleozoic Era lasted 300 million years. Hopefully, we won’t have to wait that long for product vendors to show accountability and employ secure design principles [1][2][3] to prevent so-called “unforgivable” vulnerabilities of negligence [4][5]. The takeaway is that organizations need to develop technical agility and efficient patch management programs. Continuous prioritized vulnerability management is a must.

Black Basta Tactics Revealed: Greenbone Has Coverage

Leaked internal chat logs belonging to Black Basta ransomware group have provided insight into the group’s tactics and inner workings. The logs were leaked by an individual using the alias “ExploitWhispers” who claimed the release was in response to Black Basta’s controversial targeting of Russian banks, allegedly creating internal conflicts within the group. Since its emergence in April 2022, Black Basta has reportedly amassed over $100 million in ransom payments from more than 300 victims worldwide. 62 CVEs referenced in leaked documents reveal the group’s tactics for exploiting known vulnerabilities. Of these 62, Greenbone maintains detection tests for 61, covering 98% of the CVEs.

The Greynoise 2025 Mass Exploitation Report

Mass exploitation attacks are fully automated network attacks against services that are accessible via internet. This month, Greynoise published a comprehensive report summarizing the mass exploitation landscape including the top CVEs attacked by the largest botnets (unique IPs), the most exploited product vendors and top CVEs included in the CISA’s (Cybersecurity and Infrastructure Security Agency) KEV (Known Exploited Vulnerabilities) catalog and exploited by botnets. Greenbone Enterprise Feed has detection tests for 86% of all CVEs (86 total) referenced in the report. When considering only CVEs issued in 2020 or later (66 total), our Enterprise Feed has 90% detection coverage.

Additional findings include:

  • 60% of CVEs exploited in mass exploitation attacks were published in 2020 or later.
  • Attackers are exploiting vulnerabilities within hours of disclosure.
  • 28% of vulnerabilities in CISA KEV are exploited by ransomware threat actors.

Zimbra Collaboration Suite

CVE-2023-34192 (CVSS 9.0) is a high-severity Cross-Site Scripting (XSS) vulnerability in Zimbra Collaboration Suite (ZCS) version 8.8.15. The flaw allows authenticated remote attackers to execute arbitrary code via crafted scripts targeting the `/h/autoSaveDraft` function. CISA added CVE-2023-34192 to its KEV catalog, indicating that it has been actively exploited in real-world attacks. Proof-of-concept (PoC) exploit code is publicly available, allowing low-skilled attackers to join the fray. CVE-2023-34192 has held a very high EPSS since its disclosure in 2023. For defenders leveraging EPSS for remediation prioritization, this indicates a high priority to patch.

Zimbra Collaboration Suite (ZCS) is an open-source office productivity platform that integrates email, calendar, contacts, tasks and collaboration tools but holds a niche market share of less than 1% of all email and messaging platforms.

Living on the Edge: New Critical Networking Device Flaws

In our monthly threat report we have been tracking the persistent threat to edge network devices. Earlier this-month, we reported on a perfect security storm affecting end-of-life (EOL) Zyxel routers and firewalls. In this section we will review new security risks that fall into the “edge networking” category. Greenbone has detection capabilities for all CVEs discussed below.

Chinese Hackers Exploit Palo Alto’s PAN-OS for Ransomware

CVE-2024-0012 (CVSS 9.8), a vulnerability in Palo Alto PAN-OS disclosed last November, is considered one of the most exploited vulnerabilities of 2024. The CVE is also reportedly being used by Chinese state-backed threat actors for ransomware attacks. Another new flaw affecting PAN-OS, CVE-2025-0108 (CVSS 9.1), was just disclosed this month and immediately tagged as actively exploited by CISA. CVE-2025-0108 is an authentication bypass in the management web-interface and can be chained together with CVE-2024-9474 (CVSS 7.2), a separate privilege escalation vulnerability to gain unauthenticated root control over an unpatched PAN-OS device.

SonicWall Patches a Critical Actively Exploited CVE in SonicOS

CVE-2024-53704, a critical severity vulnerability in SonicWall devices, has been recently added to CISA’s KEV list. Astoundingly, CISA lists 8 SonicWall CVEs that are known to be actively exploited in ransomware attacks. CVE-2024-53704 (CVSS 9.8) is an Improper Authentication vulnerability [CWE-287] in the SSLVPN authentication mechanism of SonicWall’s SonicOS versions 7.1.1-7058 and older, 7.1.2-7019, and 8.0.0-8035. It allows remote attackers to bypass authentication and and hijack active SSL VPN sessions, potentially gaining unauthorized network access. A full technical analysis is available from BishopFox. An advisory from SonicWall also names additional high severity CVEs in SonicOS that have been patched along with CVE-2024-53704.

Sophos’ CyberroamOS and EOL XG Firewalls Actively Exploited

Sophos, which acquired Cyberoam in 2014, has issued an alert and patch for CVE-2020-29574. CyberoamOS is part of Sophos’ product ecosystem. Aside from this CVE, Sophos XG Firewall, soon to be EOL, is also the subject of an active exploitation alert.

  • CVE-2020-29574 (CVSS 9.8): A critical SQL injection [CWE-89] vulnerability identified in the WebAdmin interface of CyberoamOS versions up to December 4, 2020. This flaw allows unauthenticated attackers to remotely execute arbitrary SQL statements, potentially gaining complete administrative access to the device. A hotfix patch has been issued, which also extends to some affected end-of-life (EOL) products.
  • CVE-2020-15069 (CVSS 9.8) is a critical Buffer Overflow vulnerability in Sophos XG Firewall versions 17.x through v17.5 MR12, allowing unauthenticated RCE via the HTTP/S Bookmarks feature for clientless access. This vulnerability, published in 2020 is now being actively exploited and has been added to CISA KEV indicating heightened risk. Sophos released an advisory in 2020 when the vulnerability was disclosed, along with a hotfix affected firewalls. The XG Series hardware appliances are soon scheduled to reach end-of-life (EOL) on March 31, 2025.

PrivEsc and Auth Bypasses in Fortinet FortiOS and FortiProxy

Fortinet disclosed two critical vulnerabilities, both affecting FortiOS and FortiProxy. The Canadian Center for Cybersecurity and the Belgian Center for Cybersecurity have issued advisories. Fortinet acknowledges active exploitation of CVE-2024-55591 and has released official guidance that includes details on affected versions and recommended updates. ​

  • CVE-2024-55591 (CVSS 9.8): An Authentication Bypass Using an Alternate Path or Channel vulnerability [CWE-288] affecting FortiOS allows a remote attacker to gain super-admin privileges via crafted requests to Node.js websocket module. Multiple PoC exploits are available [1][2] increasing the risk of exploitation by low-skilled attackers.
  • CVE-2024-40591 (CVSS 8.8): Allows an authenticated administrator with Security Fabric permissions to escalate their privileges to super-admin by connecting the targeted FortiGate device to a malicious upstream FortiGate under their control.

Cisco Flaws Implicated as Initial Access Vectors in Telecom Hacks

In the past few months, China’s Salt Typhoon espionage group has routinely exploited at least two critical vulnerabilities in Cisco IOS XE devices to gain persistent access to telecommunications networks. Victims include Italian ISP, a South African telecom, and a large Thai telecom, and twelve universities worldwide including UCLA, Indonesia’s Universitas Negeri Malang and Mexico’s UNAM among others. Previously, Salt Typhoon had compromised at least nine U.S. telecoms, including Verizon, AT&T and Lumen Technologies. U.S. authorities claim Salt Typhoon’s goal is surveilling high-profile individuals, political figures and officials related to Chinese political interests.

CVEs exploited by Salt Typhoon include:

  • CVE-2023-20198 (CVSS 10): A privilege escalation flaw in Cisco IOS XE’s web interface. Used for initial access, allowing attackers to create an admin account.
  • CVE-2023-20273 (CVSS 7.2): Another privilege escalation flaw, used after gaining admin access to escalate privileges to root and establish a GRE (Generic Routing Encapsulation) tunnel for persistence.

Also, two other CVEs in Cisco products entered the radar in February 2025:

  • CVE-2023-20118 (CVSS 7.2): A command injection vulnerability in the web-based management interface of Cisco Small Business Routers allows authenticated, remote attackers to execute arbitrary commands with root-level privileges by sending crafted HTTP requests. CISA added CVE-2023-20118 to its KEV catalog, indicating evidence of active exploitation.
  • CVE-2023-20026 (CVSS 7.2): A command injection vulnerability in the web-based management interface of Cisco Small Business Routers RV042 Series allows authenticated, remote attackers with valid administrative credentials to execute arbitrary commands on the device. The flaw is due to improper validation of user input within incoming HTTP packets. While CVE-2023-20026 is not known to be exploited in any active campaigns, Cisco’s Product Security Incident Response Team (PSIRT) is aware that PoC exploit code for this vulnerability exists.

Ivanti Patches Four Critical Flaws

Four critical vulnerabilities were identified, affecting Ivanti Connect Secure (ICS), Policy Secure (IPS), and Cloud Services Application (CSA). No reports of active attacks in the wild or PoC exploits have emerged yet. Ivanti advises users to promptly update to the newest versions to address these critical vulnerabilities.

Here is a brief technical summary:

  • CVE-2025-22467 (CVSS 8.8): Attackers with credentials can achieve remote code execution (RCE) due to a stack-based buffer overflow [CWE-121] flaw in ICS versions prior to 22.7R2.6.
  • CVE-2024-38657 (CVSS 9.1): Attackers with credentials can write arbitrary files due to an external control of file name vulnerability in ICS versions before 22.7R2.4 and IPS versions before 22.7R1.3.
  • CVE-2024-10644 (CVSS 9.1): A code injection flaw in ICS (pre-22.7R2.4) and IPS (pre-22.7R1.3), allows arbitrary RCE to authenticated administrators. ​
  • CVE-2024-47908 (CVSS 7.2): An operating system command injection vulnerability [CWE-78] in CSA’s admin web console (versions before 5.0.5), allows arbitrary RCE to authenticated administrators.

Summary

This month’s Threat Report highlights key cybersecurity developments, including the evolving tactics of ransomware groups like Black Basta and the pervasive critical threat to edge network devices. With the support of AI tools, attackers are exploiting vulnerabilities faster-sometimes within hours of disclosure. Organizations must remain vigilant by adopting proactive security measures, continuously updating their defenses and leveraging threat intelligence to stay ahead of emerging threats.

This year, many large organizations around the world will be forced to reckon with the root-cause of cyber intrusions. Many known vulnerabilities are an open gateway to restricted network resources. Our first Threat Report of 2025 reviews some disastrous breaches from 2024 and then dives into some pressing cybersecurity vulnerabilities from this past month.

However, to be clear, the vulnerabilities discussed here merely scratch the surface. In January 2025, over 4,000 new CVEs (Common Vulnerabilities and Exposures) were published; 22 with the maximum CVSS score of 10, and 375 rated critical severity. The deluge of critical severity flaws in edge networking devices has not abated. Newly attacked flaws in products from global tech giants like Microsoft, Apple, Cisco, Fortinet, Palo Alto Networks, Ivanti, Oracle and others have been appended to CISA’s (Cybersecurity and Infrastructure Security Agency) Known Exploited Vulnerabilities (KEV) catalog.

Software Supply Chain: the User’s Responsibility

We are all running software we didn’t design ourselves. This places a huge emphasis on trust. Where trust is uncertain – whether due to fears of poor diligence, malice or human error – cybersecurity responsibility still rests on the end-user. Risk assurances depend heavily on technical knowledge and collective effort. Defenders need to remember these facts in 2025.

When supply chain security fails, ask why! Did the software vendor provide the required tools to take control of your own security outcomes? Is your IT security team executing diligent vulnerability discovery and remediation? Are your resources segmented with strong access controls? Have employees been trained to identify phishing attacks? Are other reasonable cybersecurity measures in place? Organizations need to mature their ransomware-readiness, implement regular vulnerability assessments and prioritized patch management. And they should verify reliable backup strategies can meet recovery targets and prioritize other fundamental security controls to protect sensitive data and prevent downtime.

Fortune Favors the Prepared

Assessing 2024, the UK’s NCSC (National Cyber Security Center) annual review painted a grim picture; significant cyberattacks had increased three times compared to 2023. For a birds-eye view, CSIS (The Center for International Strategic & International Studies) has posted an extensive list of the most significant cyber incidents of 2024. The landscape has been shaped by the Russia Ukraine conflict and an accelerated shift from globalization to adversarialism.

Check Point Research found that 96% of all vulnerabilities exploited in 2024 were over a year old. These are positive findings for proactive defenders. Entities conducting vulnerability management will fare much better against targeted ransomware and mass exploitation attacks. One thing is clear: proactive cybersecurity reduces the cost of a breach.

Let’s review two of the most significant breaches from 2024:

  • The Change Healthcare Breach: Overall in 2024, breaches of healthcare entities were down from 2023’s record setting year. However, the ransomware attack against Change Healthcare set a new record for the number of affected individuals at 190 million, with total costs so far reaching 2,457 billion Dollar. The State of Nebraska has now filed a lawsuit against Change Healthcare for operating outdated IT systems that failed to meet enterprise security standards. According to IBM, breaches in the healthcare industry are the most costly, averaging 9.77 million Dollar in 2024.
  • Typhoon Teams Breach 9 US Telecoms: The “Typhoon” suffix is used by Microsoft’s threat actor naming convention for groups with Chinese origins. The Chinese state-sponsored adversary known as Salt Typhoon infiltrated the networks of at least nine major U.S. telecommunications companies, accessing user’s call and text metadata and audio recordings of high-profile government officials. Volt Typhoon breached Singapore Telecommunications (SingTel) and other telecom operators globally. The “Typhoons” exploited vulnerabilities in outdated network devices, including unpatched Microsoft Exchange Server, Cisco routers, Fortinet and Sophos Firewalls and Ivanti VPN appliances. Greenbone is able to detect all known software vulnerabilities associated with Salt Typhoon and Volt Typhoon attacks [1][2].

UK May Ban Ransomware Payments in Public Sector

The UK government’s framework to combat ransomware has proposed a ban on ransom payments by public sector entities and critical infrastructure operators with hopes to deter cyber criminals from targeting them in the first place. However, a new report from The National Audit Office (NAO), the UK’s independent public spending watchdog, says “cyber threat to UK government is severe and advancing quickly”.

The FBI, CISA and NSA all advise against paying ransoms. After all, paying a ransom does not guarantee the recovery of encrypted data or prevent the public release of stolen data, and may even encourage further extortion. On the flip side IBM’s security think-tank acknowledges that many SME organizations could not fiscally survive the downtime imposed by ransomware. While both sides make points here, could enriching cyber criminals while failing to shore-up local talent result in a positive outcome?

Vulnerability in SonicWall SMA 1000 Actively Exploited

Microsoft Threat Intelligence has uncovered active exploitation of SonicWall SMA 1000 gateways via CVE-2025-23006 (CVSS 9.8 Critical). The flaw is caused by improper handling of untrusted data during deserialization [CWE-502]. It could allow an unauthenticated attacker with access to the internal Appliance Management Console (AMC) or Central Management Console (CMC) interface to execute arbitrary OS commands. SonicWall has released hotfix version 12.4.3-02854 to address the flaw.

While no publicly available exploit code has been identified, numerous government agencies have issued alerts including Germany’s BSI CERT-Bund, Canadian Center for Cybersecurity, CISA, and the UK’s NHS (National Health Service). Greenbone is able to detect SonicWall systems impacted by CVE-2025-23006 by remotely checking the version identified from the service banner.

CVE-2024-44243 for Persistent Rootkit in macOS

January 2025 was a firestorm month for Apple security. Microsoft Threat Intelligence has found time to security test macOS, discovering a vulnerability that could allow installed apps to modify the OS System Integrity Protection (SIP). According to Microsoft, this could allow attackers to install rootkits, persistent malware and bypass Transparency, Consent and Control (TCC) which grants granular access permissions to applications on a per-folder basis. While active exploitation has not been reported, Microsoft has released technical details on their findings.

As January closed, a batch of 88 new CVEs, 17 with critical severity CVSS scores were published affecting the full spectrum of Apple products. One of these, CVE-2025-24085, was observed in active attacks and added to CISA’s KEV catalog. On top of these, dual speculative execution vulnerabilities in Apple’s M-series chips dubbed SLAP and FLOP were disclosed but have not yet been assigned CVEs. For SLAP, researchers leveraged chip flaws to exploit Safari WebKit’s heap allocation techniques and manipulated JavaScript string metadata to enable out-of-bounds speculative reads, allowing them to extract sensitive DOM content from other open website tabs. For FLOP, researchers demonstrated that sensitive data can be stolen from Safari and Google Chrome; bypassing Javascript type checking in Safari WebKit and Chrome’s Site Isolation via WebAssembly.

Furthermore, five high severity vulnerabilities were also published affecting Microsoft Office for macOS. Each potentially forfeiting Remote Code Execution (RCE) to an attacker. Affected products include Microsoft Word (CVE-2025-21363), Excel (CVE-2025-21354 and CVE-2025-21362) and OneNote (CVE-2025-21402) for macOS. While no technical details about these vulnerabilities are yet available, all have high CVSS ratings and users should update as soon as possible.

The Greenbone Enterprise Feed includes detection for missing macOS security updates and many other CVEs affecting applications for macOS including the five newly disclosed CVEs in Microsoft Office for Mac.

6 CVEs in Rsync Allow Both Server and Client Takeover

The combination of two newly discovered vulnerabilities may allow the execution of arbitrary code on vulnerable rsyncd servers while having only anonymous read access. CVE-2024-12084, a heap buffer overflow and CVE-2024-12085, an information leak flaw are the culprits. Public mirrors using rsyncd represent the highest risk since they inherently lack access control.

The researchers also found that a weaponized rsync server can read and write arbitrary files on connected clients. This can allow theft of sensitive information and potentially execution of malicious code by modifying executable files.

Here is a summary of the new flaws ordered by CVSS severity:

Collectively, these flaws present serious risk of RCE, data exfiltration and installing persistent malware on both rsyncd servers and unsuspecting clients. Users must update to the patched version, thoroughly look for any Indicators of Compromise (IoC) on any systems that have used rsync, and potentially redeploy file sharing infrastructure. Greenbone is able to detect all known vulnerabilities in rsync and non-compliance with critical security updates.

CVE-2025-0411: 7-Zip Offers MotW Bypass

On January 25, 2025, CVE-2025-0411 (CVSS 7.5 High) was published affecting 7-Zip archiver. The flaw allows bypassing the Windows security feature Mark of the Web (MotW) via specially crafted archive files. MoTW tags files downloaded from the internet with a Zone Identifier alternate data stream (ADS), warning when they originate from an untrusted source. However, 7-Zip versions before 24.09 do not pass the MotW flag to files within nested archives. Exploiting CVE-2025-0411 to gain control of a victim’s system requires human interaction. Targets must open a trojanized archive and then further execute a malicious file contained within.

Interestingly, research from Cofence found government websites around the world have been leveraged for credential phishing, malware delivery and command-and-control (C2) operations via CVE-2024-25608, a Liferay digital platform vulnerability. This flaw allows attackers to redirect users from trusted .gov URLs to malicious phishing sites. Combining redirection from a trusted .gov domain with the 7-Zip flaw has significant potential for stealthy malware distribution.

Considering the risks, users should manually upgrade to version 24.09, which has been available since late 2024. As discussed in the introduction above, software supply chain security often lies in a grey zone, we all depend on software beyond our control. Notably, prior to the publication of CVE-2025-0411, 7-Zip had not alerted users to a security flaw. Furthermore, although 7-Zip is open-source, the product’s GitHub account does not reveal many details or contact information for responsible disclosure.

Furthermore, the CVE has triggered DFN-CERT and BSI CERT-Bund advisories [1][2]. Greenbone is able to detect the presence of vulnerable versions of 7-Zip.

Summary

This edition of our monthly Threat Report reviewed major breaches from 2024 and newly discovered critical vulnerabilities in January 2025. The software supply chain presents elevated risk to all organizations large and small from both open-source and closed-source products. However, open-source software offers transparency and the opportunity for stakeholders to engage proactively in their own security outcomes, either collectively or independently. While cybersecurity costs are significant, advancing technical capabilities will increasingly be a determinant factor in both enterprise and national security. Fortune favors the prepared.