Tag Archive for: BSI

With the new elections, the implementation of NIS2 in Germany appears to have been halted for the time being. While other European countries are already ready, German companies will have to wait several more months until legal certainty is established. Everything has actually been said, templates have been drawn up, but the change of government means a new start is necessary.

We spoke to one of the leading experts on NIS2: Dennis-Kenji Kipker is Scientific Director of the cyberintelligence.institute in Frankfurt/Main, professor at the Riga Graduate School of Law and regularly consults as an expert at the German Federal Office for Information Security (BSI) and many other public and scientific institutions.

Why did the German government reject the final NIS2 draft?

Portrait of Prof. Dr. Dennis-Kenji Kipker, expert in IT law and cyber security, in an interview on the implementation of the NIS2 Directive

Prof. Dr. Dennis-Kenji Kipker

Kipker: This is due to the so-called discontinuity principle. Just like with the old government, all unfinished projects must be archived. “Due to the early elections, the parliamentary procedure for the NIS2UmsuCG could not be completed” is the official term. In line with the principle of discontinuity, when a newly elected Bundestag is constituted, all bills not yet passed by the old Bundestag must be reintroduced and renegotiated. This means that the work already done on NIS2 will fall by the wayside. But you can of course build on this and reintroduce almost the same text.

Will that happen?

Kipker: There is an internal 100-day plan from the Federal Ministry of the Interior for the period after the election. According to rumors, cybersecurity is a very high priority in the plan, and NIS2 in particular is now to be implemented very quickly. If this can be implemented before fall/winter 2025 (the actual current schedule), Germany will at least avoid the embarrassment of bringing up the rear in Europe.

Is that realistic?

Kipker: You would have to recycle a lot, i.e. take over things from the last legislative period despite the principle of discontinuity. Now, it seems that the current Ministry of the Interior wants to do just that. Only the politicians and officials directly involved know whether this is realistic. However, 100 days seems very ambitious to me in the Berlin political scene, even if everyone involved pulls together. There would need to be a budget, the current NIS2UmsuCG draft would need to be revised and addressed but also finalized, and the German scope of application of the law would need to be clarified and aligned with EU law. Furthermore, at the end of 2024 and the beginning of 2025, attempts were still being made to push through many things in the Bundestag after the expert hearing on NIS2, some of which are rather questionable. In any case, this would have to be renegotiated politically and evaluated technically.

When do you think this will happen?

Kipker: It’s hard to say, but even if you break the 100-day deadline, it should be feasible to complete a national NIS2 implementation before the winter of 2025/2026. But that’s just a very preliminary assumption that I keep hearing from “usually well-informed circles”. One way or another, we will be at the bottom of the league when it comes to Europe-wide implementation, and all the current ambitions won’t change that.

And what is the situation like in other European countries?

Kipker: A lot is happening right now. It has been recognized, for example, that the different national implementations of NIS2 lead to frictional losses and additional costs for the affected companies – that’s not really surprising. A few weeks ago, the European Union Agency For Cybersecurity (ENISA) published a report that is well worth reading, which explains and evaluates the maturity and criticality of relevant NIS2 sectors in a European comparison. “NIS360 is intended to support Member States and national authorities in identifying gaps and prioritizing resources”, writes the EU cybersecurity authority. And we at cyberintelligence.institute have produced a comprehensive study on behalf of the Swiss company Asea Brown Boveri, which also takes a closer look at the EU-wide implementation of the NIS2 directive.

What key insight did you gain there?

Kipker: The Comparison Report is primarily aimed at transnationally operating companies that are looking for a first point of contact for cybersecurity compliance. Above all, there is a lack of central administrative responsibilities in the sense of a “one-stop store”, and the diverging implementation deadlines are causing problems for companies. As of the end of January, only nine EU states had transposed NIS2 into national law, while the legislative process had not yet been completed in 18 other states. Another key insight: Just because I am NIS2-compliant in one EU member state does not necessarily mean that this also applies to another member state.

So, Germany may not be a pioneer, but it is not lagging behind either?

Kipker: We are definitely not at the forefront, but if we manage to implement it nationally this year, we may not be the last, but we will be among the last. My guess in this respect now is that we won’t have really reliable results until the fourth quarter of 2025. So, it’s going to be close to avoid being left in the red after all. Politicians will have to decide whether this can meet our requirements in terms of cyber security and digital resilience.

Where can affected companies find out about the current status?

Kipker: There are ongoing events and opportunities for participation. On March 18, for example, there will be a BSI information event (in German language) where you can ask about the plans. Then, in May 2025, there will also be the NIS-2 Congress right next door to us in Frankfurt, for which the “most recognized NIS-2 Community Leader” has just been selected. There will certainly be one or two interesting tidbits of information to pick up here. Otherwise, feel free to contact me at any time if you have any questions about NIS2!

Web browsers are a primary gateway to business and consequently they are also a primary gateway for cyber attacks. Malware targeting browsers could gain direct unauthorized access to a target’s network and data or social engineer victims into providing sensitive information that gives the attacker unauthorized access, such as account credentials. In 2024, major browsers (Chrome, Firefox, and Safari) accounted for 59 Critical severity (CVSS3 ³ 9) and 256 High severity (CVSS3 between 7.0 and 8.9) vulnerabilities. 10 CVEs (Common Vulnerabilities and Exposures) in the trifecta were added to the KEV (Known Exploited Vulnerabilities) catalog of CISA (Cybersecurity & Infrastructure Security Agency). Browser security should therefore be top-of-mind for security teams.

In light of this, we are proud to announce the addition of CIS Google Chrome Benchmark v3.0.0 Level 1 auditing to our list of compliance capabilities. This latest feature allows our Enterprise feed subscribers to verify their Google Chrome configurations against the industry-leading CIS compliance framework of the CIS (Center for Internet Security). The new Google Chrome benchmark tests will sit among our other CIS controls in critical cybersecurity areas such as Apache, IIS, NGINX, MongoDB, Oracle, PostgreSQL, Windows and Linux [1] [2].

CIS Google Chrome Benchmark for Windows

The CIS Google Chrome Benchmark v3.0.0 Level 1 is now available in the Greenbone Enterprise Feed. It establishes a hardened configuration for the Chrome browser. For Windows, implementing the controls involves setting Windows registry keys to define Chrome’s security configuration. Continuous attestation is important because if modified at the user level Chrome becomes more vulnerable to data-leakage, social engineering attacks or other attack vectors.

Our Enterprise vulnerability feed uses compliance policies to run tests on target endpoints, verifying each requirement in the CIS benchmark through one or more dedicated vulnerability tests. These tests are grouped into scan configurations which can be used to create scan tasks that access groups of target systems to verify their security posture. When aligning with internal risk requirements or mandatory government policies, Greenbone has you covered.

The Importance of Browser Security

Much of the critical information flowing through the average organization is transmitted through the browser. The rise of a remote workforce and cloud-based web-applications means that web browsers are a primary interface for business activities. Not surprisingly, in the past few years, Internet browsers have been a hotbed for exploitation. National cybersecurity agencies such Germany’s BSI [3] [4], CISA [5] [6], and the Canadian Centre for Cyber Security [7] have all released advisories for addressing the risks posed by Internet browsers.

Browsers can be exploited via technical vulnerabilities and misconfigurations that could lead to remote code execution, theft of sensitive data and account takeover, but are also a conduit for social engineering attacks. Browser security must be addressed by implementing a hardened security profile and continuously attesting it and by regularly applying updates to combat any recently discovered vulnerabilities. Greenbone is able to detect known vulnerabilities for published CVEs in all major browsers and now with our latest CIS Google Chrome Benchmark certification, we can attest industry standard browser compliance.

How Does the CIS Google Chrome Benchmark Improve Browser Security?

Every CIS Benchmark is developed through a consensus review process that involves a global community of subject matter experts from diverse fields such as consulting, software development, auditing, compliance, security research, operations, government, and legal. This collaborative process is meant to ensure that the benchmarks are practical and data-driven and reflect real-world expertise. As such, CIS Benchmarks serve as a vital part of a robust cybersecurity program.

In general, CIS Benchmarks focus on secure technical configuration settings and should be used alongside essential cyber hygiene practices, such as monitoring and promptly patching vulnerabilities in operating systems, applications and libraries.

The CIS Google Chrome Benchmark defines security controls such as:

  • No domains can bypass scanning for dangerous resources such as phishing content and malware.
  • Strict verification of SSL/TLS certificates issued by websites.
  • Reducing Chrome’s overall attack surface by ensuring the latest updates are automatically applied periodically.
  • Chrome is configured to detect DNS interception which could potentially allow DNS hijacking.
  • Chrome and extensions cannot interact with other third party software.
  • Websites and browser extensions cannot abuse connections with media, the local file system or external devices such as Bluetooth, USB or media casting devices.
  • Only extensions from the Google Chrome Web Store can be installed.
  • All processes forked from the main Chrome process are stopped once the Chrome application has been closed.
  • SafeSites content filtering blocks links to adult content from search results.
  • Prevent importing insecure data such as auto-fill form data, default homepage or other configuration settings.
  • Ensuring that critical warnings cannot be suppressed.

Greenbone Is a CIS Consortium Member

As a member of the CIS consortium, Greenbone continues to enhance its CIS Benchmark scan configurations. All our CIS Benchmarks policies are aligned with CIS hardening guidelines and certified by CIS, ensuring maximum security for system audits. Also, Greenbone has added a new compliance view to the Greenbone Security Assistant (GSA) web-interface, streamlining the process for organizations seeking to remove security gaps from their infrastructure to prevent security breaches.

Summary

CIS Controls are critical for safeguarding systems and data by providing clear, actionable guidance on secure configurations. The CIS Google Chrome Benchmark is especially vital at the enterprise level, where browsers impact many forms of sensitive data. It’s exciting to announce that Greenbone is expanding the industry leading vulnerability detection capabilities with a new compliance scan: the CIS Google Chrome Benchmark v3.0.0 Level 1. With this certification, Greenbone continues to strengthen its position as a trusted ally in proactive cybersecurity. This latest feature reflects our dedication to advancing IT security and protecting against evolving cyber threats.

The world may be entering into a new phase of cyber, and a new technological paradigm. So-called “industry leading” or “enterprise grade” software is perpetually shown to be vulnerable with new critical vulnerabilities exposed and evidence of active exploitation on a weekly basis. Fancy new features keep us engaged but, considering the risk of fast-moving technologies, it’s important to work with organizations that keep things simple, stick to their core competencies and do things right.

In this November 2024’s edition of the Greenbone vulnerability report, we examine some recently released reports from the BSI and CISA to see what government cybersecurity agencies make of the current threat environment, then we follow up with news of the most pressing and actively exploited vulnerabilities in this month. Considering the high degree of risk presented by the current landscape of cybersecurity threats, it’s important to prioritize the fundamentals of IT security – and software design – to avoid building operations on a proverbial house of cards.

BSI Releases Its Annual IT Security Summary for 2024

Policy in the EU continues to rapidly evolve in response to increasing cyber risk. Cybersecurity for all requires cross-border cooperation on many levels. According to the 2024 summary report, the German Federal Office for Information Security (BSI) is focused on harmonizing national specifications with cybersecurity best practices while considering the economic and technical feasibility of new measures. Referred to as the “Europeanisation of Cybersecurity”, European standardisation and Germany’s collaboration with the three European Standardisation Organisations CEN, CENELEC and ETSI promote a risk-based approach to enforcing security best practices among critical infrastructure and providers of virtually all digital products.

Regarding the Cyber Resilience Act (CRA), each member state will have authority to remove non-compliant products from the market and penalise offending vendors. “Important products” (Class I), such as password managers and routers, must follow harmonised European standards (hEN). Regarding NIS2, the BSI received 726 reports representing 141 incidents from critical infrastructure facilities so far in 2024. This includes sectors like healthcare, energy, water, food, IT and telecommunications, financial and insurance services, among others.

The BSI also observed an overall increase in new malware variants and 256% increase in malware exploiting Windows. Reading the full report relays trends in attacker behaviors such as an increase in Bring Your Own Vulnerable Driver (BYOVD) attacks capable of disabling EDR security products. There were also ongoing efforts to sinkhole botnets that contribute to mass exploitation attacks at scale, and the continuing fragmentation of cybercrime activities into initial access brokering and second stage ransomware groups.

How do these observations pertain to Greenbone and vulnerability management in general? While effective vulnerability management and compliance auditing are only one piece of the enterprise cybersecurity puzzle, closing known security gaps and regularly attesting strong security configurations is a critical core competency that all organizations need to master.

CISA’s Most Exploited Vulnerabilities of 2023 Are Revealing

The 2023 Top Routinely Exploited Vulnerabilities report from the Cybersecurity & Infrastructure Security Agency (CISA) observed an increase in exploited zero-day vulnerabilities compared to 2022 and their use in attacks on high-priority targets. Other than zero-days, the report lists the top 47 CVEs (Common Vulnerabilities and Exposures) exploited by attackers. Networking (40%) and productivity software (34%) make up the vast majority of highly targeted CVEs. There is also a strong trend in the type of software flaws most exploited. Mishandling untrusted input accounts for 38% of the most attacked software flaws, while improper authentication and authorization make up 34%. Sadly, considerations for securing these flaws are elementary, covered in application design 101. Also, 90% of the top exploited vulnerabilities in the report are in closed source proprietary products indicating that cyber criminals are not hindered by reverse engineering barriers.

While the EU is motivated to improve security via legal requirements, CISA continues its plea for software vendors to employ Secure by Design principles during development stages. They also suggest that more pay-to-hack bug bounty programs could incentivize ethical security researchers.

Multiple Critical Flaws in Palo Alto Products Attacked

On November 8, 2024, Palo Alto Networks issued a security advisory revealing a zero-day remote code execution (RCE) vulnerability affecting its PAN-OS operating system. The advisory was soon updated after evidence of active exploitation emerged. Here is a summary of new vulnerabilities in Palo Alto products disclosed in November 2024.

  • CVE-2024-0012 (CVSS 9.8 High): An authentication bypass in PAN-OS allows unauthenticated access to administrator privileges. Attackers may perform administrative actions, tamper with the configuration, or exploit other authenticated privilege escalation vulnerabilities like CVE-2024-9474.
  • CVE-2024-9474 (CVSS 7.2 High): A privilege escalation vulnerability in PAN-OS software allows PAN-OS administrators to perform actions on the firewall with root privileges.
  • CVE-2024-9463 (CVSS 7.5 High): An OS command injection vulnerability in Expedition allows an unauthenticated attacker to run arbitrary OS commands as root. This allows unauthorized disclosure of usernames, cleartext passwords, device configurations and device API keys of PAN-OS firewalls.
  • CVE-2024-9465 (CVSS 9.1 High): SQL injection could allow an unauthenticated attacker to reveal Expedition database contents, such as password hashes, usernames, device configurations and device API keys, or create and read arbitrary files on the Expedition system.
  • CVE-2024-5910 (CVSS 9.8 High): Missing authentication for a critical function in Expedition can lead to admin account takeover remotely and expose configuration secrets, credentials and other data.

Greenbone is able to detect all new CVEs published in Palo Alto devices in November 2024. Ideally, ensure networking management interfaces are not accessible via the public Internet and for best practices, use firewall configuration to prevent access from unauthorized internal network endpoints.

US Critical Telecom Infrastructure Breached

The recent breaches involving major US telecom providers serves as a stark warning to all organizations operating complex IT infrastructure at scale. Blame has been laid on Chinese backed hacking groups who reportedly used the access to intercepted U.S. political officials’ calls, SMS text-messages and intercepted mobile metadata. According to Adam Meyers, vice president of intelligence at CrowdStrike, by compromising the telecoms directly, threat actors circumvent the need for breaching the individual networks of their targets. Considering the sheer number of critical vulnerabilities in products from US networking vendors such as Palo Alto Networks, Oracle, Cisco, Citrix, Ivanti, Broadcom, Microsoft and Fortinet more intensive application security testing would greatly reduce the risk to their core customers – US companies at home and abroad, and other large global firms.

Liminal Panda, Salt Typhoon, Volt Typhoon and others are known to attack “shadow IT” – legacy mobile protocols that IT administrators are not aware is still active or actively monitoring. Sophisticated, highly skilled APT actors are highly adaptable and have the resources to develop malware for virtually any known vulnerability that is exploitable, as well as actively develop zero-day exploits yet unknown.

5 Privilege Escalation Flaws Found in Ubuntu’s Needrestart

A flaw in Ubuntu’s Needrestart feature could allow an unprivileged local attacker to execute shell commands as root user. The new CVEs impact all versions of Needrestart going back to 2014. Needrestart determines whether any processes need to be restarted after systemwide packages are updated to avoid a full reboot and is invoked by the apt package manager. The vulnerability is caused when untrusted data such as environment variables are passed unsanitized to the Module::ScanDeps library which executes as root. These user-level environment variables can also influence Python and Ruby interpreters during Needrestart’s execution.

The vulnerabilities can be mitigated by updating Needstart to a patched version or by disabling the interpreter scanning feature by setting $nrconf{interpscan} = 0 in the needrestart.conf configuration file. Greenbone includes detection for all CVEs related to Needrestart feature [1][2][3].

Here is a brief description the newly disclosed CVEs:

  • CVE-2024-11003 (CVSS 7.8 High): Unsanitized data passed to the Module::ScanDeps library could allow a local attacker to execute arbitrary shell commands.
  • CVE-2024-10224 (CVSS 5.3): Unsanitized input passed to the Module::ScanDepscan library allows execution of arbitrary shell commands by opening a “pesky pipe” (such as passing “commands|” as a filename) or by passing arbitrary strings to eval().
  • CVE-2024-48990 (CVSS 7.8 High): Allows local attackers to execute arbitrary code as root by tricking Needrestart into running the Python interpreter via the PYTHONPATH environment variable.
  • CVE-2024-48991 (CVSS 7.8 High): Allows local attackers to execute arbitrary code as root by winning a race condition and pointing Needrestart to a fake Python interpreter instead of the system’s real Python interpreter.
  • CVE-2024-48992 (CVSS 7.8 High): Allows local attackers to execute arbitrary code as root by tricking needrestart into running the Ruby interpreter via the RUBYLIB environment variable.

Is Third Time the Charm for VMware vCenter Critical RCE Flaws?

VMware has been grappling with the challenge of effectively patching critical vulnerabilities in its vCenter server products. Broadcom, which owns VMware, initially released patches in September for two significant vulnerabilities in vCenter, CVE-2024-38812 (CVSS 9.8 High) classified as a heap-overflow vulnerability in the implementation of the DCERPC protocol, and CVE-2024-38813 (CVSS 9.8 High) which offers privilege escalation via ​​specially crafted network packets.

However, these initial patches were insufficient, prompting a second round of patches in October. Despite these efforts, it was confirmed in November that the CVEs were still vulnerable and had been exploited in the wild. vCenter is a prime target for attackers due to its widespread use, and the situation highlights ongoing security challenges. VMware users should apply patches promptly. When CVEs such as these in VMware vCenter are updated with new information, Greenbone’s team of security analysts reviews the changes and updates our vulnerability tests accordingly.

Helldown Ransomware Exploiting Zyxel and Its Customers

In November 2024, a Linux variant of the Helldown ransomware payload was discovered. Helldown is known to exploit the IPSec VPN of Zyxel devices via CVE-2024-42057 (CVSS 8.1 High) for initial access. After gaining a foothold, Helldown steals any accessible credentials and creates new users and VPN tunnels to maintain persistence. The new variant targets VMware ESXi virtual machines to exfiltrate their data and encrypt them. This technique is shared by other ransomware groups such as the Play gang.

The Helldown ransomware group is considered an emerging threat, claiming over 30 victims since August, including the maker of Zyxel products themselves. Zyxel has issued an article acknowledging the attacks with mitigation instructions and Truesec has published known Helldown TTP (Tactics Techniques and Procedures) from their response efforts. Greenbone is able to detect all vulnerabilities known to be associated with Helldown ransomware attacks including CVE-2024-42057 in Zyxel products [1][2][3] as well as known software vulnerabilities used by other ransomware threat actors to gain initial access, escalate privileges and move laterally to high value targets within the victim’s network.

Summary

From EU policy advancements to CISA’s insights on exploited vulnerabilities: the critical need for better software development practices, effective vulnerability management and defense in depth is evident. November’s events, such as Palo Alto’s zero-days, Ubuntu’s Needrestart flaws and VMware vCenter’s ongoing challenges, emphasize the importance of timely monitoring and patching of critical infrastructure. Emerging threats like Helldown ransomware reinforce the need for proactive defense strategies. Greenbone continues to support organizations by detecting critical vulnerabilities, providing actionable insights and advocating for a security-first approach with fundamental IT security best practices.

The Common Security Advisory Framework (CSAF) is a framework for providing machine-readable security advisories following a standardized process to enable automated cybersecurity information sharing. Greenbone is continously working on the integration of technologies that leverage the CSAF 2.0 standard for automated cybersecurity advisories. For an introduction to CSAF 2.0 and how it supports next-generation vulnerability management, you can refer to our previous blog post.

In 2024, the NIST National Vulnerabilities Database (NVD) outage has disrupted the flow of critical cybersecurity intelligence to downstream consumers. This makes the decentralized CSAF 2.0 model increasingly relevant. The outage highlights the need for a decentralized cybersecurity intelligence framework for increased resilience against a single point of failure. Those who adopt CSAF 2.0, will be one step closer to a more reliable cybersecurity intelligence ecosystem.


Table of Contents

1. What We Will Cover in this Article
2. Who Are the CSAF Stakeholders?
2.1. Understanding Roles in the CSAF 2.0 Process
2.1.1. CSAF 2.0 Issuing Parties
2.1.1.1. Understanding the CSAF Publisher Role
2.1.1.2. Understanding the CSAF Provider Role
2.1.1.3. Understanding the CSAF Trusted-Provider Role
2.1.2. CSAF 2.0 Data Aggregators
2.1.2.1. Understanding the CSAF Lister Role
2.1.2.2. Understanding the CSAF Aggregator Role
3. Summary


1. What We Will Cover in this Article

This article will provide a detailed explanation of the various stakeholders and roles defined in the CSAF 2.0 specification. These roles govern the mechanisms of creating, disseminating and consuming security advisories within the CSAF 2.0 ecosystem. By understanding who the stakeholders of CSAF are and the standardized roles defined by the CSAF 2.0 framework, security practitioners can better realize how CSAF works, whether it can serve to benefit their organization and how to implement CSAF 2.0.

2. Who Are the CSAF Stakeholders?

At the highest level, the CSAF process has two primary stakeholder groups: upstream producers who create and supply cybersecurity advisories in the CSAF 2.0 document format and downstream consumers (end-users) who consume the advisories and apply the security information they contain.

Upstream producers are typically software product vendors (such as Cisco, Red Hat and Oracle) who are responsible for maintaining the security of their digital products and providing publicly available information about vulnerabilities. Upstream stakeholders also include independent security researchers and public entities that act as a source for cybersecurity intelligence such as the US Cybersecurity Intelligence and Security Agency (CISA) and the German Federal Office for Information Security (BSI).

Downstream consumers consist of private corporations who manage their own cybersecurity and Managed Security Service Providers (MSSPs), third-party entities that provide outsourced cybersecurity monitoring and management. The information contained in CSAF 2.0 documents is used downstream by IT security teams to identify vulnerabilities in their infrastructure and plan remediation and by C-level executives for assessing how IT risk could negatively impact operations.

Diagram of the CSAF 2.0 stakeholders: On the left, the upstream producers such as software vendors, authorities, and researchers; on the right, the downstream consumers such as CERTs, SOC teams, and security platforms – connected through the CSAF 2.0 advisory format.

The CSAF 2.0 standard defines specific roles for upstream producers that outline their participation in creating and disseminating advisory documents. Let’s examine those officially defined roles in more detail.

2.1. Understanding Roles in the CSAF 2.0 Process

CSAF 2.0 Roles are defined in Section 7.2. They are divided into two distinct groups: Issuing Parties (“Issuers”) and Data Aggregators (“Aggregators”). Issuers are directly involved in the creation of advisory documents. Aggregators collect those documents and distribute them to end-users, supporting automation for consumers. A single organization may fulfill the roles of both an Issuer and an Aggregator, however, these functions should operate as separate entities.  Obviously, organizations who act as upstream producers must also maintain their own cybersecurity. Therefore, they may also be a downstream consumer – ingesting CSAF 2.0 documents to support their own vulnerability management activities.

Diagram of the CSAF 2.0 upstream roles, showing the groups Issuing Parties (Producer, Provider, Trusted Provider) and Data Aggregators (Lister, Aggregator), who forward cybersecurity advisories to downstream consumers.

Next, let’s break down the specific responsibilities for CSAF 2.0 Issuing Parties and Data Aggregators.

2.1.1. CSAF 2.0 Issuing Parties

Issuing Parties are the origin of CSAF 2.0 cybersecurity advisories. However, Issuing Parties are not responsible for transmitting the documents to end-users. Issuing Parties are responsible for indicating if they do not want their advisories to be listed or mirrored by Data Aggregators. Also, CSAF 2.0 Issuing Parties can also act as Data Aggregators.

Here are explanations of each sub-role within the Issuing Parties group:

2.1.1.1. Understanding the CSAF Publisher Role

Publishers are typically organizations that discover and communicate advisories only on behalf of its own digital products. Publishers must satisfy requirements 1 to 4 in Section 7.1 of the CSAF 2.0 specification. This means issuing structured files with valid syntax and content that adhere to the CSAF 2.0 filename conventions described in Section 5.1 and ensuring that files are only available via encrypted TLS connections. Publishers must also make all advisories classified as TLP:WHITE publicly accessible.

Publishers must also have a publicly available provider-metadata.json document containing basic information about the organization, its CSAF 2.0 role status, and links to an OpenPGP public key used to digitally sign the provider-metadata.json document to verify its integrity. This information about the Publisher is used downstream by software apps that display the publisher’s advisories to end-users.

2.1.1.2. Understanding the CSAF Provider Role

Providers make CSAF 2.0 documents available to the broader community. In addition to meeting all the same requirements as a Publisher, a Provider must provide its provider-metadata.json file according to a standardized method (at least one of the requirements 8 to 10 from Section 7.1), employ standardized distribution for its advisories, and implement technical controls to restrict access to any advisory documents with a TLP:AMBER or TLP:RED status.

Providers must also choose to distribute documents in either a directory-based or the ROLIE-based method. Simply put, directory-based distribution makes advisory documents available in a normal directory path structure, while ROLIE (Resource-Oriented Lightweight Information Exchange) [RFC-8322] is a RESTful API protocol designed specifically for security automation, information publication, discovery and sharing.

If a Provider uses the ROLIE-based distribution, it must also satisfy requirements 15 to 17 from Section 7.1. Alternatively, if a Provider uses the directory-based distribution it must satisfy requirements 11 to 14 from Section 7.1.

2.1.1.3. Understanding the CSAF Trusted-Provider Role

Trusted-Providers are a special class of CSAF Providers who have established a high level of trust and reliability. They must adhere to stringent security and quality standards to ensure the integrity of the CSAF documents they issue.

In addition to meeting all the requirements of a CSAF Provider, Trusted-Providers must also satisfy the requirements 18 to 20 from Section 7.1 of the CSAF 2.0 specification. These requirements include providing a secure cryptographic hash and OpenPGP signature file for each CSAF document issued and ensuring the public part of the OpenPGP signing key is made publicly available.

2.1.2. CSAF 2.0 Data Aggregators

Data Aggregators focus on the collection and redistribution of CSAF documents. They act as a directory for CSAF 2.0 Issuers and their advisory documents and intermediary between Issuers and end-users. A single entity may act as both a CSAF Lister and Aggregator. Data Aggregators may choose which upstream Publishers’ advisories to list or collect and redistribute based on their customer’s needs.

Here are explanations of each sub-role in the Data Aggregator group:

2.1.2.1. Understanding the CSAF Lister Role

Listers gather CSAF documents from multiple CSAF Publishers and list them in a centralized location to facilitate retrieval. The purpose of a Lister is to act as a sort of directory for CSAF 2.0 advisories by consolidating URLs where CSAF documents can be accessed. No Lister is assumed to provide a complete set of all CSAF documents.

Listers must publish a valid aggregator.json file that lists at least two separate CSAF Provider entities and while a Lister may also act as an Issuing Party, it may not list mirrors pointing to a domain under its own control.

2.1.2.2. Understanding the CSAF Aggregator Role

The CSAF Aggregator role represents the final waypoint between published CSAF 2.0 advisory documents and the end-user. Aggregators provide a location where CSAF documents can be retrieved by an automated tool. Although Aggregators act as a consolidated source of cybersecurity advisories, comparable to NIST NVD or The MITRE Corporation’s CVE.org, CSAF 2.0 is a decentralized model as opposed to a centralized model. Aggregators are not required to offer a comprehensive list of CSAF documents from all Publishers. Also, Publishers may provide free access to their CSAF advisory feed, or operate as a paid service.

Similarly to Listers, Aggregators must make an aggregator.json file available publicly and CSAF documents from each mirrored Issuer must be placed in a separate dedicated folder along with the Issuer’s provider-metadata.json. Essentially, Aggregators must satisfy the requirements 1 to 6 and 21 to 23 from Section 7.1 of the CSAF 2.0 specification.

CSAF Aggregators are also responsible for ensuring that each mirrored CSAF document has a valid signature (requirement 19) and a secure cryptographic hash (requirement 18). If the Issuing Party does not provide these files, the Aggregator must generate them.

3. Summary

Understanding CSAF 2.0 stakeholders and roles is essential for ensuring proper implementation of CSAF 2.0 and to benefit from automated collection and consumption of critical cybersecurity information. The CSAF 2.0 specification defines two main stakeholder groups: upstream producers, responsible for creating cybersecurity advisories, and downstream consumers, who apply this information to enhance security. Roles within CSAF 2.0 include Issuing Parties, such as Publishers, Providers, and Trusted-Providers to who generate and distribute advisories, and Data Aggregators, like Listers and Aggregators, who collect and disseminate these advisories to end-users.

Members of each role must adhere to specific security controls that support the secure transmission of CSAF 2.0 documents, and the Traffic Light Protocol (TLP) governs how documents are authorized to be shared and the required access controls.

The German implementation of the EU’s NIS2 directive is becoming more and more defined: End of July, the NIS2 Implementation Act passed the German government’s cabinet, a final decision in the Bundestag is imminent. For all companies and authorities wondering whether this concerns them, the BSI has now launched a comprehensive website with an impact assessment and valuable information under the catchy hashtag #nis2know.

Even if the Bundestag resolution is not yet passed and thus the originally planned date in October will perhaps not be feasible anymore, companies must prepare now, the Federal Office for Information Security (BSI) demands. The BSI is therefore providing companies and organizations of all kinds with an eight-part questionnaire (in German only) to help IT managers and managers find out whether the strict regulations of NIS2 also apply to them. For all companies and organizations that fall under the NIS2 regulation, the BSI also provides further assistance and answers to the question of what they can do now in advance of NIS2 coming into force.

High need, high demand

Demand appears to be high, with both BSI head Claudia Plattner and Federal CIO Markus Richter reporting success in the form of several thousand hits in the first few days (for example on LinkedIn: Plattner, Richter). The NIS2 vulnerability test can be found directly on the BSI website. Here you will find “specific questions based on the directive to classify your company”. The questions are “kept short and precise and are explained in more detail in small print if necessary”. Anyone filling out the BSI’s questionnaire will know within minutes whether their company or organization is affected by NIS2.

In the questions, the respondent must address whether their company is the operator of a critical facility, a provider of publicly accessible telecommunications services or public telecommunications networks, a qualified trust service provider, a top-level domain name registry or a DNS service provider. Even if the company is a non-qualified trust service provider or offers goods and services that fall under one of the types of facilities specified in Annex 1 or 2 of the NIS 2 Directive, it is affected by the NIS 2 regulations.

Anybody who can answer all questions with “No” is not affected by NIS2. For everyone else, however, the BSI offers extensive help and research options on what to do now. A FAQ list explains in detail in nine questions the current status, whether you should wait or already start preparing. Links to sources and contacts can be found here, as well as further information for the impact checks and explanations of terms (for example: What does “important”, “essential” and “particularly important” mean in the context of NIS2?) Also very important are the sections that explain which obligations and evidence affected companies must provide when and where, as well as the still unanswered discussion as to when NIS2 becomes binding.

The BSI’s wealth of information also includes support services for businesses, as well as clear instructions for the next steps and basic explanations on critical infrastructures (KRITIS) in general.

Take action now, despite waiting for the Bundestag

The national implementation of the European NIS2 Directive, which has been the subject of heated debate in some quarters, was recently delayed due to major differences of opinion between the parties involved, meaning that the previously expected date had to be postponed. The Federal Ministry of the Interior had already confirmed weeks ago that it would not come into force in October.

Irrespective of the wait for the Bundestag, those affected should take action now, writes the BSI: responsible persons and teams must be appointed, roles and tasks must be defined, but also an inventory is to be taken and processes are to be set up for continuous improvement. Preparing for the upcoming reporting obligation should be a top priority.

Extensive information also from Greenbone

Greenbone has also devoted numerous blog posts and guides to the topic of NIS2 in recent months, from the Cyber Resilience Act and the threat situation for municipalities to effective measures and basically everything what is needed to know about NIS2 right now.

NIS2 Umsetzung gezielt auf den Weg bringen!

The deadline for the implementation of NIS2 is approaching – by October 17, 2024, stricter cybersecurity measures are to be transposed into law in Germany via the NIS2 Implementation Act. Other member states will develop their own legislature based on EU Directive 2022/2555. We have taken a close look at this directive for you to provide you with the most important pointers and signposts for the entry into force of NIS2 in this short video. In this video, you will find out whether your company is affected, what measures you should definitely take, which cybersecurity topics you need to pay particular attention to, who you can consult in this regard and what the consequences of non-compliance are.

Preview image for the video 'What you need to know about NIS2' with European star circle and NIS2 lettering - redirects to YouTube

Learn about the Cyber Resilience Act, which provides a solid framework to strengthen your organization’s resilience against cyberattacks. The ENISA Common Criteria will help you assess the security of your IT products and systems and take a risk-minimizing approach right from the development stage. Also prioritize the introduction of an information management system, for example by implementing ISO 27001 certification for your company. Seek advice about IT baseline protection from specialists recommended by the BSI or your local responsible office.

In addition to the BSI as a point of contact for matters relating to NIS2, we are happy to assist you and offer certified solutions in the areas of vulnerability management and penetration testing. By taking a proactive approach, you can identify security gaps in your systems at an early stage and secure them before they can be used for an attack. Our vulnerability management solution automatically scans your system for weaknesses and reports back to you regularly. During penetration testing, a human tester attempts to penetrate your system to give you final assurance about the attack surface of your systems.

You should also make it a habit to stay up to date with regular cybersecurity training and establish a lively exchange with other NIS2 companies. This is the only way for NIS2 to lead to a sustainable increase in the level of cyber security in Europe.

To track down the office responsible for you, follow the respective link for your state.

Austria France Malta
Belgium Germany Netherlands
Bulgaria Greece Poland
Croatia Hungary Portugal
Cyprus Ireland Romania
Czech Republic Italy Slovakia
Denmark Latvia Slovenia
Estonia Lithuania Spain
Finland Luxembourg Sweden

The IT-Grundschutz-Compendium of the Federal Office for Information Security (BSI) has, in recent years, provided clear guidelines for users of Microsoft Office. Since April 2024, Greenbone’s enterprise products have integrated tests to verify whether a company is implementing these instructions. The BSI guidelines are aligned with the Center for Internet Security (CIS) guidelines.

In the section “APP:Applications 1.1. Office Products” the BSI specifies the “requirements for the functionality of Office product components.” The goal is to protect the data processed and used by the Office software. While Microsoft Office is likely the primary reference due to its widespread market penetration, the model behind the BSI guidelines aims to apply to any office product “that is locally installed and used to view, edit, or create documents, excluding email applications.”

BSI Guidelines

The module explicitly builds on the requirements of the “APP.6 General Software” component and refers to the modules “APP.5.3 General Email Client,” “APP.4.3 Relational Databases,” and “OPS.2.2 Cloud Usage,” although it expressly does not consider these.

The BSI identifies three main threats to Office suites:

  • Lack of customization of Office products to the institution’s needs
  • Malicious content in Office documents
  • Loss of integrity of Office documents

The components listed in the BSI IT-Grundschutz-Compendium include 16 points, some of which have since been removed. Greenbone has developed several hundred tests, primarily addressing five of the basic requirements, including “Secure opening of documents from external sources” (APP.1.1. A3) and “Use of encryption and digital signatures” listed in APP.1.1. A15. The BSI specifies:

“All documents obtained from external sources MUST be checked for malware before being opened. All file formats deemed problematic and all unnecessary within the institution MUST be banned. If possible, they SHOULD be blocked. Technical measures SHOULD enforce that documents from external sources are checked.”

Regarding encryption, it states: “Data with increased protection requirements SHOULD only be stored or transmitted in encrypted form. Before using an encryption method integrated into an Office product, it SHOULD be checked whether it offers sufficient protection. Additionally, a method SHOULD be used that allows macros and documents to be digitally signed.”

CIS Guidelines Enhance Basic Protection

In addition to the requirements listed in the BSI Basic Protection Manual, the CIS Benchmark from the Center for Internet Security (CIS) for Microsoft Office includes further and more specific suggestions for securing Microsoft products. The CIS guidelines are developed by a community of security experts and represent a consensus-based best practice collection for Microsoft Office.

As one of the first and only vulnerability management providers, Greenbone now offers tests on security-relevant features mentioned in the CIS guidelines, uniting CIS and BSI instructions in numerous, sometimes in-depth tests, such as on ActiveX Control Initialization in Microsoft Office. The Greenbone Vulnerability Management tests whether this switch is set to “enabled”, but also many other settings, for example, whether “Always prevent untrusted Microsoft Query files from opening” is set to “Enabled” among many others.

Many tests focus on external content, integrating macros, and whether and how these external contents are signed, verifiable, and thus trustworthy or not, and whether administrators have done their homework in configuring Microsoft Office. According to the BSI, one of the most significant threats (and the first mentioned) is the lack of adaptation of Office products to the reality and the business processes in the company. Greenbone’s new tests ensure efficient compliance with regulations, making it harder for attackers and malware to establish a foothold and cause damage in the company.

After experts noticed a rapid increase in cyberattacks on local authorities and government agencies in 2023, the horror stories don’t stop in 2024. The pressure to act is enormous, as the EU’s NIS2 Directive will come into force in October and makes risk and vulnerability management mandatory.

“The threat level is higher than ever,” said Claudia Plattner, President of the German Federal Office for Information Security (BSI), at Bitkom in early March. The question is not whether an attack will be successful, but only when. The BSI’s annual reports, for example the most recent report from 2023, also speak volumes in this regard. However, according to Plattner, it is striking how often local authorities, hospitals and other public institutions are at the centre of attacks. There is “not a problem with measures but with implementation in companies and authorities”, said Plattner. One thing is clear: vulnerability management such as Greenbone’s can provide protection and help to avoid the worst.

US authorities infiltrated by Chinese hackers

In view of the numerous serious security incidents, vulnerability management is becoming more important every year. Almost 70 new security vulnerabilities have been added every day in recent months. Some of them opened the door to attackers deep inside US authorities, as reported in the Greenbone Enterprise Blog:

According to the media, US authorities have been infiltrated by Chinese hacker groups such as the probably state-sponsored “Volt Typhoon” for years via serious security gaps. The fact that Volt Typhoon and similar groups are a major problem was even confirmed by Microsoft itself in a blog back in May 2023. But that’s not all: German media reported that Volt Typhoon is taking advantage of the abundant vulnerabilities in VPN gateways and routers from FortiNet, Ivanti, Netgear, Citrix and Cisco. These are currently considered to be particularly vulnerable.

The fact that the quasi-monopolist in Office, groupware, operating systems and various cloud services also had to admit in 2023 that it had the master key for large parts of its Microsoft cloud let stolen destroyed trust in the Redmond software manufacturer in many places. Anyone who has this key doesn’t need a backdoor for Microsoft systems any longer. Chinese hackers are also suspected in this case.

Software manufacturers and suppliers

The supply chain for software manufacturers has been under particular scrutiny by manufacturers and users not only since log4j or the European Cyber Resilience Act. The recent example of the attack on the XZ compression algorithm in Linux also shows the vulnerability of manufacturers. In the case of the “#xzbackdoor”, a combination of pure coincidence and the activities of Andres Freund, a German developer of open source software for Microsoft with a strong focus on performance, prevented the worst from happening.

An abyss opened up here: It was only thanks to open source development and a joint effort by the community that it came to light that actors had been using changing fake names with various accounts for years with a high level of criminal energy and with methods that would otherwise be more likely to be used by secret services. With little or no user history, they used sophisticated social scams, exploited the notorious overload of operators and gained the trust of freelance developers. This enabled them to introduce malicious code into software almost unnoticed. In the end, it was only thanks to Freund’s interest in performance that the attack was discovered and the attempt to insert a backdoor into a tool failed.

US officials also see authorities and institutions as being particularly threatened in this case, even if the attack appears to be rather untargeted and designed for mass use. The issue is complex and far from over, let alone fully understood. One thing is certain: the usernames of the accounts used by the attackers were deliberately falsified. We will continue to report on this in the Greenbone blog.

European legislators react

Vulnerability management cannot prevent such attacks, but it provides indispensable services by proactively warning and alerting administrators as soon as such an attack becomes known – usually before an attacker has been able to compromise systems. In view of all the difficulties and dramatic incidents, it is not surprising that legislators have also recognised the magnitude of the problem and are declaring vulnerability management to be standard and best practice in more and more scenarios.

Laws and regulations such as the EU’s new NIS2 directive make the use of vulnerability management mandatory, including in the software supply chain. Even if NIS2 only actually applies to around 180,000 organisations and companies in the critical infrastructure (KRITIS) or “particularly important” or “significant” companies in Europe, the regulations are fundamentally sensible – and will be mandatory from October. The EU Commission emphasises that “operators of essential services” must “take appropriate security measures and inform the competent national authorities of serious incidents”. Important providers of digital services such as search engines, cloud computing services and online marketplaces must fulfil the security and notification requirements of the directive.”

Mandatory from October: A “minimum set of cyber security measures”

The “Directive on measures for a high common level of cybersecurity across the Union (NIS2)” forces companies in the European Union to “implement a benchmark of minimum cybersecurity measures”, including risk management, training, policies and procedures, also and especially in cooperation with software suppliers. In Germany, the federal states are to define the exact implementation of the NIS2 regulations.

Do you have any questions about NIS2, the Cyber Resilience Act (CRA), vulnerability management in general or the security incidents described? Write to us! We look forward to working with you to find the right compliance solution and give your IT infrastructure the protection it needs in the face of today’s serious attacks.

To make our ecological progress even more sustainable, we keep up to date with regular internal training courses on energy efficiency. In this way, we are helping to make the world even “greener” outside of Greenbone.

We at Greenbone are excited to introduce the innovative Greenbone SMP-Bund-Portal in collaboration with the Federal Office for Information Security (BSI). As a leading provider of IT security solutions, we are proud to offer this platform specifically tailored to the needs of federal agencies.

A Portal Setting Standards

The Greenbone SMP-Bund-Portal is the central point of contact for IT security and vulnerability management. It has been developed to provide agencies with concrete support in addressing current IT security challenges.

Many Advantages for Federal Agencies

  1. Easy-to-Understand Insights: The portal offers clear and user-friendly information about vulnerability management. It is ideal for both beginners and experts in IT security.
  2. Exclusive Framework Contract Conditions: Federal agencies enjoy special offers and benefits. The obligation to issue public tenders is eliminated, saving time and resources.
  3. Personal Support: Our competent support team is always at our customers’ side to answer questions and ensure support.
  4. Direct Access to the Agency Sales Team: Expert advice from our team, which is well-versed in the specific requirements of federal agencies. We look forward to furthering our trusted collaboration with the BSI and are available for any questions.
  5. Opportunity for Exchange: Use the shared forum to share your experiences and questions.

https://smp-bund.greenbone.net/

Contact Free Trial Buy Here Back to Overview

In the November 2023 commVT Intelligence Update, several critical vulnerabilities and security threats have come to light. Cisco’s Internetworking Operating System (IOS) XE Software Web User Interface (UI) was found to be vulnerable to two actively exploited critical vulnerabilities, allowing attackers to execute arbitrary code remotely. The curl command-line tool, widely used across various platforms, faced a serious vulnerability that could result in arbitrary code execution during SOCKS5 proxy handshakes. VMware is urging immediate updates for its vCenter Server due to a critical vulnerability potentially leading to remote code execution. Multiple vulnerabilities were found in versions of PHP 8; one is a particularly critical deserialization vulnerability in the PHAR extraction process. Additionally, SolarWinds Access Rights Manager (ARM) was found susceptible to multiple critical vulnerabilities, emphasizing the urgency to update to version 2023.2.1. Lastly, two F5 BIG-IP vulnerabilities were discovered to be actively exploited, with mitigation options available and outlined below.

Cisco IOS XE: Multiple Critical Vulnerabilities

Two actively exploited critical CVSS 10 vulnerabilities were discovered in Cisco’s Internetworking Operating System (IOS) XE Software Web User Interface (UI); CVE-2023-20198 and CVE-2023-20273. Combined, they allow an attacker to remotely execute arbitrary code as the system user and are estimated to have been used to exploit tens of thousands of vulnerable devices within the past few weeks. Greenbone has added detection for both the vulnerable product by version [1], and another aimed at detecting the BadCandy implanted configuration file [2]. Both are VTs included in Greenbone’s Enterprise vulnerability feed.

Cisco IOS was created in the 1980s and used as the embedded OS in the networking technology giant’s routers. Fast forward to 2023, IOS XE is a leading enterprise networking full-stack software solution that powers Cisco platforms for access, distribution, core, wireless, and WAN. IOS XE is Linux-based, and specially optimized for networking and IT infrastructure, routing, switching, network security, and management. Cisco devices are pervasive in global IT infrastructure and used by organizations of all sizes, including large-scale enterprises, government agencies, critical infrastructure, and educational institutions.

Here’s how the two recently disclosed CVEs work:

CVE-2023-20198 (CVSS 10 Critical): Allows a remote, unauthenticated attacker to create an account [T1136] on an affected system with privilege level 15 (aka privileged EXEC level) access [CWE-269]. Privilege level 15 is the highest level of access to Cisco IOS. The attacker can then use that account to gain control of the affected system.
CVE-2023-20273 (CVSS 7.2 High): A regular user logged into the IOS XE web UI, can inject commands [CWE-77] that are subsequently executed on the underlying system with the system (root) privileges. This vulnerability is caused by insufficient input validation [CWE-20]. CVE is also associated with a Lua-based web-shell [T1505.003] implant dubbed “BadCandy”. BadCandy consists of an Nginx configuration file named `cisco_service.conf` that establishes a URI path to interact with the web-shell implant but requires the webserver to be restarted.

Cisco has released software updates for mitigating both CVEs in IOS XE software releases, including versions 17.9, 17.6, 17.3, and 16.12 as well as available Software Maintenance Upgrades (SMUs) and IT security teams are strongly advised to urgently install them. Cisco has also released associated indicators of compromise (IoC), Snort rules for detecting active attacks, and a TAC Technical FAQs page. Disabling the web UI prevents exploitation of these vulnerabilities and may be suitable mitigation until affected devices can be upgraded. Publicly released proof of concept (PoC) code [1][2] and a Metasploit module further increase the urgency to apply the available security updates.

Critical Vulnerability In The Curl Tool

A widespread vulnerability has been discovered in the popular curl command line tool, libcurl, and the many software applications that leverage them across a wide number of platforms. Tracked as CVE-2023-38545 (CVSS 9.8 Critical), the flaw makes curl overflow a heap-based buffer [CWE-122]] in the SOCKS5 proxy handshake that can result in arbitrary code execution [T1203]. Greenbone’s community feed includes several NVTs [1] to detect many of the affected software products and will add additional detections for CVE-2023-38545 as more vulnerable products are identified.

CVE-2023-38545 is a client-side vulnerability exploitable when passing a hostname to the SOCKS5 proxy that exceeds the maximum length of 255 bytes. If supplied with an excessively long hostname, curl is supposed to use local name resolution and pass it on to the resolved address only. However, due to the CVE-2023-38545 flaw, curl may actually copy the overly long hostname to the target buffer instead of copying just the resolved address there. The target buffer, being a heap-based buffer, and the hostname coming from the URL results in the heap-based overflow.

While the severity of the vulnerability is considered high because it can be exploited remotely and has a high impact to the confidentiality, integrity, and availability (CIA) of the underlying system, the SOCKS5 proxy method is not the default connection mode and must be declared explicitly. Additionally, for an overflow to happen an attacker also needs to cause a slow enough SOCKS5 handshake to trigger the bug. All versions of curl are affected between v7.69.0 (released March 4th, 2020) until v8.3.0. The vulnerable code was patched in v8.4.0 commit 4a4b63daaa.

VMware vCenter Server: Multiple Vulnerabilities

CVE-2023-34048 is a critical severity vulnerability that could allow a malicious actor with network access to vCenter Server to cause an out-of-bounds write [CWE-787] potentially leading to remote code execution (RCE). The affected software includes VMware vCenter Server versions 6.5, 6.7, 7.0, and 8.0. VMWare has issued a security advisory to address both vulnerabilities which states that there are no known mitigations other than installing the provided updates. Both vulnerabilities can be detected by Greenbone’s enterprise vulnerability feed [1]. The vCenter Server patch also fixes CVE-2023-34056, a medium-severity information disclosure resulting from improper authorization [CWE-285].

Although there are no reports that CVE-2023-34048 is being actively exploited in the wild attackers have proven adept at swiftly converting threat intelligence into exploit code. Research by Palo Alto Networks Unit 42 threat research group shows that on average an exploit is published 37 days after a security patch is released.

Here are some brief details on both CVEs:

CVE-2023-34048 (CVSS 9.8 Critical): vCenter Server contains an out-of-bounds write [CWE-787] vulnerability in the implementation of the DCERPC protocol. A malicious actor with network access to vCenter Server may trigger this vulnerability to achieve remote code execution (RCE). The Distributed Computing Environment Remote Procedure Call (DCERPC) protocol facilitates remote procedure calls (RPC) in distributed computing environments, allowing applications to communicate and invoke functions across networked systems.
CVE-2023-34056 (CVSS 4.3 Medium): vCenter Server contains a partial information disclosure vulnerability. A malicious actor with non-administrative privileges to vCenter Server may leverage this issue to access unauthorized data.

Multiple Vulnerabilities Discovered In PHP 8

Several vulnerabilities were identified in PHP 8.0.X before 8.0.28, 8.1.X before 8.1.16 and 8.2.X before 8.2.3. Although the group of vulnerabilities does include one critical and two high-severity vulnerabilities, these require particular contexts to be present for exploitation; either deserializing PHP applications using PHAR or else using PHP’s core path resolution functions on untrusted input. Greenbone’s enterprise VT feed includes multiple detection tests for these vulnerabilities across multiple platforms.

Here are brief descriptions of the most severe recent PHP 8 vulnerabilities:

CVE-2023-3824 (CVSS 9.8 Critical): A PHAR file (short for PHP Archive) is a compressed packaging format in PHP, which is used to distribute and deploy complete PHP applications in a single archive file. While reading directory entries during the PHAR archive loading process, insufficient length checking may lead to a stack buffer overflow [CWE-121], potentially leading to memory corruption or remote code execution (RCE).
CVE-2023-0568 (CVSS 8.1 High): PHP’s core path resolution function allocates a buffer one byte too small. When resolving paths with lengths close to the system `MAXPATHLEN` setting, this may lead to the byte after the allocated buffer being overwritten with NULL value, which might lead to unauthorized data access or modification. PHP’s core path resolution is used for the `realpath()` and `dirname()` functions, when including other files using the `include()`, `include_once()`, `require()`, and `require_once()`, and during the process of resolving PHP’s “magic” constants” such as `__FILE__` and `__DIR__`.
CVE-2023-0567 (CVSS 6.2 Medium): PHP’s `password_verify()` function may accept some invalid Blowfish hashes as valid. If such an invalid hash ever ends up in the password database, it may lead to an application allowing any password for this entry as valid [CWE-287]. Notably, this vulnerability has been assigned different CVSS scores by NIST (CVSS 6.2 Medium) and the PHP group CNA (CVSS 7.7 High), the difference being that the PHP Group CNA considers CVE-2023-0567 a high risk to confidentiality while NIST does not. CNAs are a group of independent vendors, researchers, open source software developers, CERT, hosted service, and bug bounty organizations authorized by the CVE Program to assign CVE IDs and publish CVE records within their own specific scopes of coverage.

SolarWinds Access Rights Manager (ARM): Multiple Critical Vulnerabilities

SolarWinds Access Rights Manager (ARM) prior to version 2023.2.1 is vulnerable to 8 different exploits; one critical and two additional high-severity vulnerabilities (CVE-2023-35182, CVE-2023-35185, and CVE-2023-35187). These include authenticated and unauthenticated privilege escalation [CWE-269], directory traversal [CWE-22], and remote code execution (RCE) at the most privileged “SYSTEM” level. Greebone’s Enterprise vulnerability feed includes both local security check (LSC) [1] and remote HTTP detection [2].

SolarWinds ARM is an enterprise access control software for Windows Active Directory (AD) networks and other resources such as Windows File Servers, Microsoft Exchange services, and Microsoft SharePoint as well as virtualization environments, cloud services, NAS devices, and more. The widespread use of ARM and other SolarWinds software products means that its vulnerabilities have a high potential to impact a wide range of large organizations including critical infrastructure.

These and more recent vulnerabilities are disclosed in SolarWinds’ security advisories. Although no reports of active exploitation have been released, mitigation is highly recommended and available by installing SolarWinds ARM version 2023.2.1.

F5 BIG-IP: Unauthenticated RCE And Authenticated SQL Injection Vulnerabilities

Two RCE vulnerabilities in F5 BIG-IP, CVE-2023-46747 (CVSS 9.8 Critical) and CVE-2023-46748 (CVSS 8.8 High), have been observed by CISA to be actively exploited in the wild soon after PoC code was released for CVE-2023-46747. A Metasploit exploit module has also since been published. F5 BIG-IP is a family of hardware and software IT security products for ensuring that applications are always secure and perform the way they should. The platform is produced by F5 Networks, and it focuses on application services ranging from access and delivery to security. Greenbone has added detection for both CVEs [1][2].

CVE-2023-46747 is a remote authentication bypass [CWE-288] vulnerability while CVE-2023-46748 is a remote SQL injection vulnerability [CWE-89] that can only be exploited by an authenticated user. The affected products include the second minor release (X.1) for major versions 14-17 of BIG-IP Advanced Firewall Manager (AFM) and F5 Networks BIG-IP Application Security Manager (ASM).

If you are running an affected version you can eliminate this vulnerability by installing the vendor-provided HOTFIX updates [1][2]. The term “hotfix” implies that the patch can be applied to a system while it is running and operational, without the need for a shutdown or reboot. If updating is not an option, CVE-2023-46747 can be mitigated by downloading and running a bash script that adds or updates the `requiredSecret` attribute in the Tomcat configuration, which is used for authentication between Apache and Tomcat, and CVE-2023-46748 can be mitigated by restricting access to the Configuration utility to allow only trusted networks or devices, and ensuring only trusted user accounts exist thereby limiting the attack surface.


Contact Free Trial Buy Here Back to Overview