Tag Archive for: Greenbone Networks

Update from 2021-12-20: information about additional vulnerabilities found for Log4j can be found here.


Update from 2021-12-20: vulnerability tests for products running on Microsoft Windows are now available.

Note: The tests check the existence of Log4j and its version. A separate vulnerability test may not be available for each affected application, but all Log4j files are found and reported (/path-to-log4j-file/).

The issued installation paths must be checked and, if necessary, the vendor must be contacted. It must be checked whether updates are already available for the respective application and whether the find is relevant.

PowerShell execution privileges on a target system are required for the account used in an authenticated scan. Some vulnerability tests execute PowerShell commands to increase the accuracy of the results, which require permissions for the duration of a scan.


Update from 2021-12-15: an additional attack vector was identified and reported in CVE-2021-45046. We are working on vulnerability tests for this vector, although our tests are working for this additional case too. We recommend to update to the latest Log4j version. The attack is more complicated and a protection requires a different configuration. But as this is a very new vector, we advise to better be save than sorry. For more information see https://www.lunasec.io/docs/blog/log4j-zero-day-update-on-cve-2021-45046/.


This article collects answers to the most frequently asked questions regarding Greenbone’s Log4j vulnerability test coverage.

What Is this Vulnerability About?

The “Log4Shell” vulnerability affects a software library responsible for recording events (so called “logging”) in software written in the Java programming language. A malicious attacker can use this vulnerability to execute code on the affected systems.

Since this vulnerability can be exploited through the Internet and without any authentication, this can be very critical for affected systems and companies. As the software is also included in a lot of software and services accessible through the Internet, many companies and services are likely to be affected.

More information about this vulnerability can be found here:

Are any Greenbone Products and Services Affected?

We checked the status of potentially affected systems with the highest priority. None of our products or internally and externally provided services are affected.

Can Greenbone Products Detect this Vulnerability?

Yes, detection routines have been integrated into the Greenbone Community Feed and into the Greenbone Enterprise Feed starting with feed version 202112130808. This means that both our appliances and our cloud product are able to detect this vulnerability.

While detection routines are available, the complex nature of this vulnerability means that a detection cannot be guaranteed to find every single affected system or products. This especially applies to unauthenticated “remote” checks, for the following reasons:

  • The product or service may only be vulnerable under very specific circumstances. As the Log4j library is very complex and highly configurable and it is used differently in many products, it is not possible to find all vulnerable instances through a remote check.
  • Security configurations in the customer’s network may prevent a successful verification of the vulnerability.
  • Products and services may also be affected indirectly.

A custom scan configuration for directly detecting this vulnerability as quickly as possible is also available through both feeds. Please note that the current scan configuration only contains active checks (remote and local). Package-version checks are not included to keep the scan configuration, and thus the scan time, minimal.

Is the Detection Included in the Greenbone Community Feed?

Yes. A basic detection for the vulnerability is included in both feeds. Additional vulnerability tests for potentially affected enterprise products are available through the Greenbone Enterprise Feed.

Which Detection Is Included in Which Feed?

Greenbone Enterprise Feed

We are continuously deploying vulnerability tests into the Greenbone Enterprise Feed, so the following list may be incomplete, but reports the status of 12:00 p.m.

Important: To get the most current information regarding your installation, you can search for ~CVE-2021-44228 in the “CVE” and “NVTs” section of the “SecInfo” menu on the web interface of your installation.

  • Apache Log4j 2.0.x < 2.15.0 RCE Vulnerability (Log4Shell)
  • Apache Log4j Detection (Linux/Unix SSH Login)
  • Apache Log4j 2.0.x < 2.15.0 RCE Vulnerability (HTTP, Log4Shell) – Active Check
  • Apache Struts 2.5.x Log4j RCE Vulnerability (Log4Shell)
  • Apache Druid < 0.22.1 Multiple Vulnerabilities (Log4Shell)
  • Apache Flink < 1.13.4, 1.14.x < 1.14.1 Log4j RCE Vulnerability (Log4Shell)
  • Apache Log4j 2.0.x < 2.15.0 RCE Vulnerability (TCP, Log4Shell) – Active Check
  • Apache Log4j 2.0.x < 2.15.0 RCE Vulnerability (UDP, Log4Shell) – Active Check
  • Apache Log4j 2.0.x < 2.15.0 RCE Vulnerability (SIP, Log4Shell) – Active Check
  • Apache Solr 7.x, 8.x Log4j RCE Vulnerability (Log4Shell) – Version Check
  • Debian: Security Advisory for apache-log4j2 (DSA-5020-1)
  • Debian LTS: Security Advisory for apache-log4j2 (DLA-2842-1)
  • Elastic Logstash Log4j RCE Vulnerability (Log4Shell)
  • Openfire < 4.6.5 Log4j RCE Vulnerability (Log4Shell)
  • VMware vCenter Server 6.5, 6.7, 7.0 Log4j RCE Vulnerability (VMSA-2021-0028, Log4Shell) – Version Check
  • VMware Workspace ONE Access Log4j RCE Vulnerability (VMSA-2021-0028, Log4Shell)
  • VMware vRealize Operations Log4j RCE Vulnerability (VMSA-2021-0028, Log4Shell)
  • VMware vRealize Log Insight Log4j RCE Vulnerability (VMSA-2021-0028, Log4Shell)
  • VMware vRealize Automation Log4j RCE Vulnerability (VMSA-2021-0028, Log4Shell)
  • VMware vRealize Orchestrator Log4j RCE Vulnerability (VMSA-2021-0028, Log4Shell)
  • VMware vCenter Server 6.5, 6.7, 7.0 Log4j RCE Vulnerability (VMSA-2021-0028, Log4Shell) – Active Check
  • ArcGIS Server <= 10.7.1 Log4j RCE Vulnerability (Log4Shell)
  • Metabase < 0.41.4 Log4j RCE Vulnerability (Log4Shell)
  • Splunk 8.1.x, 8.2.x Log4j RCE Vulnerability (Log4Shell)
  • Wowza Streaming Engine <= 4.8.16 Log4j RCE Vulnerability (Log4Shell)
  • SonicWall Email Security 10.x Log4j RCE Vulnerability (SNWLID-2021-0032, Log4Shell)
  • IBM WebSphere Application Server Log4j RCE Vulnerability (6525706, Log4Shell)
Greenbone Community Feed

We are continuously deploying vulnerability tests into the Greenbone Community Feed, so the following list may be incomplete, but reports the status of 12:00 p.m.

Important: To get the most current information regarding your installation, you can search for ~CVE-2021-44228 in the “CVE” and “NVTs” section of the “SecInfo” menu on the web interface of your installation.

  • Apache Log4j 2.0.x < 2.15.0 RCE Vulnerability (Log4Shell)
  • Consolidation of Apache Log4j detections
  • Apache Log4j Detection (Linux/Unix SSH Login)
  • Apache Log4j 2.0.x < 2.15.0 RCE Vulnerability (HTTP, Log4Shell) – Active Check
  • Debian: Security Advisory for apache-log4j2 (DSA-5020-1)
  • Elastic Logstash Log4j RCE Vulnerability (Log4Shell)
  • Debian LTS: Security Advisory for apache-log4j2 (DLA-2842-1)
  • Openfire < 4.6.5 Log4j RCE Vulnerability (Log4Shell)
  • Apache Log4j 2.0.x < 2.15.0 RCE Vulnerability (TCP, Log4Shell) – Active Check
  • Apache Log4j 2.0.x < 2.15.0 RCE Vulnerability (UDP, Log4Shell) – Active Check
  • Apache Log4j 2.0.x < 2.15.0 RCE Vulnerability (SIP, Log4Shell) – Active Check

About Authenticated/Unauthenticated Tests

Some version checks require authentication, others do not. Additionally, some could have both.

The respective information is available through the links returned by the search for ~CVE-2021-44228 in the “CVE” and “NVTs” section of the “SecInfo” menu on the web interface of your installation.

The “Quality of Detection” contains information on the detection method. A value of “package (97 %)” indicates an authenticated check, other values like “remote_banner (80 %)” happen unauthenticated.

For more technical information about this see https://docs.greenbone.net/GSM-Manual/gos-21.04/en/reports.html#quality-of-detection-concept.

About Active Tests/Test Checking Version, QoD

You can see if it is an active check based on the QoD and the “Detection Method” on the web interface when viewing the vulnerability test details.

Note: Only systems which are actually logging input which can be modified by an attacker (e.g., specific HTTP request headers, URLs, …) are vulnerable.

The detection method, Quality of Detection, mitigation and lots of further details are available through the links returned by the search for ~CVE-2021-44228 in the “CVE” and “NVTs” section of the “SecInfo” menu on the web interface of your installation.

Scanning for Nodes on Separate VRFs & VLANs

  • Out-of-band (OOB) scanning is currently not possible. Please scan in each segment.
  • We think of such an Out-of-band (OOB) communication/external interaction possibility to be integrated in the future.


The second part of our series on the ongoing professionalization of attacks on IT systems deals with changes in the attackers’ mindset. Automation, commercialization and cloud computing have also left their mark on the typical profile of cyber criminals that admins and vulnerability management have to deal with. Contrary to common Hollywood clichés, the threat of Ransomware as a Service is usually not (anymore) posed by highly talented script kiddies with a lot of time on their hands or anarchistic world improvers in hoodies. Nor from highly qualified intelligence agencies equipped with seemingly endless resources.

Attacks Are Commissioned Work Today

Today’s most dangerous attacks are increasingly working “on contract,” pursuing a business model, and must also be guided by values such as efficiency or probability of success. Just as cloud computing has become an integral part of most companies’ IT, it now also serves cyber criminals to automate, organize and accelerate attacks. With great success: Ransomware has grown to become the biggest threat, and with Ransomware as a Service, attacks can be booked quite easily.

More and more security professionals are just now developing an understanding of the attackers’ business models: their logic is hardly any different from that of other companies. They invest the same resources in developing exploits and tools and want to achieve the highest possible return on investment (ROI). That is why they often pay close attention to the reusability of their tools.

Faced with limited resources, cyber criminals develop exploits for widely used technologies that offer high profit potential for multiple targets.

The Perspective of Cyber Criminals

The attackers have organized themselves, orders are placed on the darknet, and payment is made via Bitcoin. They are profit-maximized, efficiency-oriented and professionally structured: However, the new, economy-oriented logic can and must also be a key to better defense mechanisms. Especially when security managers see themselves buried under an avalanche of security warnings, it is helpful to understand how cyber criminals “tick”.

In order to secure their own systems, defense must now rethink and think outside the box. Understanding the logic of cyber criminals helps decipher key signals and close gaps. David Wolpoff, CTO of Randori, has formulated six key questions in a blog post on Threatpost that describe the mindset of modern cyber criminals well:

  1. What useful information about a target can be identified from the outside?
  2. How valuable is the target to the attackers?
  3. Is the target known to be easy to hack?
  4. What is the potential of the target and environment?
  5. How long will it take to develop an exploit?
  6. Is there a repeatable ROI for an exploit?

The more knowledge cyber criminals can gather about a technology or a person in a company, the better they can plan the next attack phase. In the first step, they thus ask how detailed the target can be described from the outside. For example, depending on the configuration, a web server may not reveal a server identifier or server names and detailed version numbers. If the exact version of a used service and its configuration is visible, precise exploits and attacks can be executed. This maximizes the chances of success while minimizing the probability of detection and the effort required.

No Longer Random

The increasingly important economic interest ensures that cyber criminals have to consider factors such as effort, time, money and risk more strongly. Accordingly, it is not worthwhile to attack or spy on systems indiscriminately. These days, attackers first clarify the potential value before acting and focus on promising targets such as VPNs and firewalls, credential stores, authentication systems or remote support solutions at the network edge. These could turn out to be master keys and unlock the way into the network or to credentials.

Again and again, reports of critical and incendiary vulnerabilities emerge that apparently no one had exploited for attacks. It sounds unbelievable, but often no one has done the work to program an exploit for a vulnerability. Modern cyber criminals increasingly follow the principle of return on investment and make use of existing proof of concepts (POC).

Complexity Is Unwanted

This sometimes yields surprising findings: modern cyber criminals avoid well-documented vulnerabilities. Extensive research and analysis of a particular vulnerability is more an indicator of unwanted complexity and effort, which one wants to keep to a minimum. RaaS hackers search for available tools or buy exploits already created for a particular object. Attackers want to move unnoticed in the systems they compromise. So they pick targets with few defenses where malware and pivoting tools work, such as desktop phones and VPN apps and other unprotected hardware. Many apps there are built with or for Linux, have a full scope of use, and have trusted pre-installed tools. This promises to keep them usable after an exploit and makes them all the more attractive to cyber criminals.

Surprising Cost-Benefit Calculation

Once the target has been set, attackers need to assess time, cost, and reusability. Vulnerability research also goes beyond simply uncovering unpatched devices. Cyber criminals must assess whether the cost of researching and developing the resulting tools is commensurate with the gain after an attack. Well-documented software or open-source tools that are easy to obtain and test mean a relatively easy target.

Also surprising: overall, the severity of a vulnerability does not play the central role for cyber criminals, according to Wolpoff. Planning an attack is far more complex and requires economic thinking. Recognizing that the other side must also make compromises helps defend cloud environments in a meaningful way. Protecting everything, everywhere, all the time from all attackers is illusory. Thinking more like them, however, makes prioritization easier.

In the third part of this series of articles, it’s all about whether the Ransomware-as-a-Service model would be possible without Bitcoin and darknet, and whether the two technologies actually deliver what the attackers promise in that context.

The employees of Greenbone are currently developing a completely new scanner for version comparisons. The new vulnerability scanner “Notus” should significantly accelerate the comparison of software versions, CVEs and patches in the future.

Scanner architecture of the new vulnerability scanner

A large part of modern vulnerability management consists of comparing software versions. If you want to find out whether your server is immune to a vulnerability, you need to know which version of a particular software is running on that machine. For example, version 1 may be affected by a vulnerability that is already fixed in version 2. Whether vulnerability scanners like the new vulnerability scanner “Notus” issue a warning depends, among other things, heavily on the result of these comparisons.

Björn Ricks, Unit Lead Services & Platforms at Greenbone explains, “Such tasks alone accounted for more than a third of a scanner’s work, and the scanner we have optimized specifically for version comparisons is designed to speed this up significantly.”

Performance Shortcomings of Classic Scanners

At the beginning of the work of a classic scanner is an advisory with a gap found by experts. Greenbone employees then search for matching (affected) software versions and those that have already corrected the error. This information must now be made available to the scanner.

“It then rattles off the relevant servers and records software running there. For the actual scan, it essentially only gets the info about affected and fixed packages,” Ricks explains. “With the OpenVAS scanner and its predecessors, we usually had to start a separate process per version check, meaning a separate manually created script. Generating these scripts automatically is costly.”

JSON Data Helps Speed up the Scanner

The new scanner, on the other hand, only loads the data it needs from files in JSON format, an easy-to-read plain-text standard. “This means the logic for the tests is no longer in the scripts. This has many advantages: fewer processes, less overhead, less memory required.” Ricks believes the approach is “significantly more efficient.”

Elmar Geese, COO of Greenbone explains, “Our new Notus scanner will be a milestone for our users, it will significantly improve performance. Our well-known high detection quality as well as performance are key goals of our product strategy, and the new scanner supports this in an optimal way.”

The “Notus” project consists of two parts: a “Notus” generator, which creates the JSON files containing information about vulnerable RPM/Debian packages, and the “Notus” scanner, which loads these JSON files and interprets the information from them. Greenbone plans to complete the new vulnerability scanner “Notus” in the next few months.

About Greenbone and OpenVAS

When the development team of the vulnerability scanner Nessus decided to stop working under open source licenses and switch to a proprietary business model in 2005, several forks of Nessus were created. Only one of them is still active: the Open Vulnerability Assessment System (OpenVAS).

The founding of Greenbone in 2008 aimed to drive the development of OpenVAS and provide users with professional vulnerability scanning support. Greenbone started to lead the further development of OpenVAS, added several software components and thus transformed OpenVAS into a comprehensive vulnerability management solution that still carries the values of free software. The first appliances hit the market in spring 2010.

Contact Free Trial Buy Here Back to overview

With the help of Greenbone products, known vulnerabilities in an IT infrastructure can be detected and subsequently eliminated. Assessing the severity of a vulnerability is an essential tool for planning and prioritizing subsequent remediation actions. CVSS provides such an assessment according to a metrics system. Since 2021, Greenbone’s current solutions also support CVSS versions 3.0 and 3.1, and at the same time, Greenbone started to provide all vulnerability tests for which a respective rating is available with it. As of October 2021, this work is now complete and there is – as far as possible – full CVSSv3x coverage in the Greenbone feeds.

Helpful Severity Metrics

Every cyber attack needs a vulnerability to be successful. Most vulnerabilities, namely 999 out of 1,000, have already been known for more than a year and can therefore be proactively detected and eliminated. For detection, a Greenbone vulnerability scanner is used, which finds the known vulnerabilities in an IT infrastructure.

If vulnerabilities are discovered, they can subsequently be eliminated using a wide variety of measures. The most urgent vulnerabilities to be eliminated are those that pose a critical risk to the IT system. Prioritization is required for selecting the measures and the order.

The severity is an essential tool for prioritization. However, we will take a closer look at how vulnerabilities are assigned a severity level in the first place and how it is calculated.

How Severity Ratings Are Created

In the past, different organizations and security research teams discovered and reported vulnerabilities at the same time and named them with different names. This resulted in the same vulnerability being reported by, for example, multiple scanners under different names, making communication and comparison of results difficult.

To address this, MITRE founded the Common Vulnerabilities and Exposures (CVE) project. Each vulnerability was given a unique identifier as a central reference, consisting of the year of publication and a simple number. The CVE database is used to link vulnerability databases with other systems and to allow comparison of security tools and services.

CVEs thus do not contain any detailed, technical information or information regarding the risks, effects or elimination of a vulnerability. In some cases, the version in which the vulnerability was removed is stored.

Further information about a vulnerability can be found in the National Vulnerability Database (NVD). The NVD – a U.S. government vulnerability management data repository – supplements CVEs with information regarding remediation, potential impact, affected products, and also the severity of a vulnerability.

How is the Severity of a Vulnerability Calculated?

The Common Vulnerability Scoring System (CVSS) was developed to enable the assessment of vulnerabilities. CVSS is an industry standard for describing the severity of security risks in IT systems. It was developed by the CVSS Special Interest Group (CVSS-SIG) of the Forum of Incident Response and Security Teams (FIRST). The latest CVSS version is 3.1.

The CVSS score evaluates vulnerabilities according to various criteria, so-called “metrics”: base-score metrics, temporal-score metrics and environmental-score metrics.

  • Base-score metrics: base-score metrics represent the basic characteristics of a vulnerability that are independent of time and the IT environment: how well can the vulnerability be exploited and what is the impact?
  • Temporal-score metrics: temporal-score metrics represent characteristics that can change over time but are the same in different IT environments. For example, the deployment of a patch by the deploying organization would lower the score.
  • Environmental-score metrics: environmental-score metrics represent the characteristics that apply to a specific IT environment. Relevant here are how well the affected organization can intercept successful attacks or what status a particular vulnerable system has within the IT infrastructure.

Since, in general, only the base score metrics are meaningful and can be determined permanently, only these are usually published and used.

CVSSv3.0/v3.1 Support Since GOS 21.04

Since GOS 21.04, which was released in April 2021, versions 3.0 and 3.1 of CVSS are also supported. Although some CVEs – and thus also the associated vulnerability tests – still contain version 2 CVSS data, this mainly affects older CVEs from the year 2015 and earlier, for which no CVSSv3.0/v3.1 score is yet stored in the NVD.

Let’s look at the biggest changes that versions 3.0 and 3.1 include.

Compared to CVSS version 2.0, version 3.0 retains the main groups of metrics – base, temporal, and environmental – but adds new criteria. For example, the metrics “Scope (S)”, which indicates whether a vulnerability can also affect other components of an IT network, and “User Interaction (UI)”.

Some existing criteria have also been replaced by newer ones: “Authentication (Au)” has become “Privileges Required (PR)”. It is no longer measured how often attackers have to authenticate themselves to a system, but what level of access is required for a successful attack.

In addition, the severity levels were subdivided more finely. In version 2.0, the values from 0 to 10 were divided into three severity levels: “Low” (0.0 – 3.9), “Medium” (4.9 – 6.9) and “High” (7.0 – 10.0). Since version 3.0, there are five levels: “None” (0.0), “Low” (0.1 – 3.9), “Medium” (4.0 – 6.9), “High” (7.0 – 8.9) and “Critical” (9.0 – 10.0).

CVSS version 3.1 did not bring any changes to the metrics or the calculation formulas. Instead, the focus was on emphasizing that CVSS measures the severity of a vulnerability rather than the risk it poses. A common mistake was to view the CVSS score as the sole characteristic of a vulnerability’s risk, rather than performing a fully comprehensive risk assessment.

In the course of this, the definitions of the metrics were formulated more clearly and the glossary was expanded.

Full CVSSv3.0/v3.1 Coverage in the Feed

With CVSSv3.0/v3.1 support in April 2021, Greenbone began updating all vulnerability tests assigned a CVSSv3.0/v3.1 score in the NVD to include a CVSSv3.0/v3.1 score.

This was done in daily stages of 500 – 600 vulnerability tests. The update and conversion were thoroughly reviewed and tested. Since October 2021, this work has now been completed. Thus, there is – as far as possible – full CVSSv3x coverage in the Greenbone feeds.

Contact Free Trial Buy Here Back to overview

Since 2021-04-30, the latest GOS version – version 21.04 – is available and, as always, it brings a lot of new features and improvements! What exactly? Get an overview of all important changes with GOS 21.04 here!

New Hardware Models for Our Midrange Class Available

A new hardware generation has been introduced for the Midrange Class hardware appliances, which are used for medium-sized companies or for branch offices of large, distributed companies.

The new hardware now uses SSD-type hard disks instead of HDD, which are 10 times faster, quieter and lighter. There is also more hard disk space available. The RAM has also been improved. It is now DDR4 instead of DDR3, which makes it significantly faster with a higher clock rate (3200 MHz). Furthermore, twice to four times as much main memory is available than before. In addition, a new, faster CPU of the latest generation has been installed. The ports of the appliances also change: instead of 6 ports GbE-Base-TX and 2 ports 1 GbE SFP, there are now 8 ports GbE-Base-TX and 2 ports 10 GbE SFP+.

The model names remain unchanged.

Boreas Alive Scanner now as Standard

The Boreas Alive Scanner is a host alive scanner that identifies the active hosts in a target network. It was introduced with GOS 20.08, but was previously optional. With GOS 21.04, the Boreas Alive Scanner became standard.

Compared to the Nmap port scanner, which was previously used by default, the Boreas Alive Scanner is not limited in terms of the maximum number of alive scans performed simultaneously and is therefore faster.

The Boreas Alive Scanner significantly reduces scanning time for large networks with a small percentage of reachable hosts. This also makes it possible to get the first scan results faster, regardless of the percentage of alive hosts in the network.

Clearer Results Thanks to New Report Formats

Two additional report formats are now available for exporting reports, replacing the previous standard report formats: Vulnerability Report PDF and Vulnerability Report HTML. The report formats are clearly structured and easy to understand. Specific information relevant to the target group can be quickly identified and understood.

The report formats provide a basis for user-defined reports, which are planned for future GOS versions.

 

New Network Backend for a more Stable Connection

With GOS 21.04, the network configuration backend in GOS has been improved by introducing the gnm networking mode. This prevents connection losses in certain network configurations as well as connection problems with SSH sessions. In addition, the GSM no longer needs to be restarted after certain network settings have been changed.

New Hypervisors for Our Virtual Appliances

The officially supported hypervisors for the virtual appliances have been changed with GOS 21.04. The GSM EXA/PETA/TERA/DECA and 25V can be used with Microsoft Hyper-V, VMware vSphere Hypervisor (ESXi), and Huawei FusionCompute; the GSM CENO can be used with Microsoft Hyper-V and VMware vSphere Hypervisor (ESXi); and the GSM ONE can be used with Oracle VirtualBox, VMware Workstation Pro, and VMware Workstation Player. Additionally, GOS 21.04 supports the ARM instruction set on Huawei FusionCompute.

Improvement of the Web Server, Ciphers and Web Certificates

With GOS 21.04, the nginx web server is used in addition to the Greenbone Security Assistant Daemon (gsad). This web server uses OpenSSL instead of GnuTLS to define the available ciphers and protocols of the server. There is now a new menu in the GOS administration menu for configuring the TLS version. In addition, the menu for configuring the ciphers has been adapted.

Another change can be found in the generation of HTTPS certificates. Here it is now possible to define one or more Subject Alternative Name(s) (SAN). These are used to cover multiple domain names and IP addresses with one certificate.

CVSS v3.0/v3.1 Support for Severity Calculation

CVSS version 3.0 and 3.1 are now supported for calculating the severity of CVEs (Common Vulnerability Enumeration).

VTs and CVEs can contain version 2 and/or version 3.0/3.1 CVSS data. If a VT/CVE contains both CVSS v2 data and CVSS v3.0/v3.1 data, the CVSS v3.0/v3.1 data is always used and displayed.

The page CVSS Calculator now contains both a calculator for CVSS v2 and a calculator for CVSS v3.0/v3.1.

Open Scanner Protocol Makes all Sensor GSMs Lightweighted

Already with GOS 20.08 it was optionally possible for all sensors to be controlled via the Open Scanner Protocol (OSP). This results in the sensors becoming lightweighted and avoids the need for additional credentials on the sensor.

With GOS 21.04, only OSP is now used as the protocol to control a sensor GSM via a master GSM. The Greenbone Management Protocol (GMP) is no longer used.

Simplified and More Intuitive Functions on the Web Interface

With GOS 21.04, some minor changes have also been made to GOS and the web interface to make GSM operation and scanning clearer and more intuitive.

For example, the Auto-FP function and the alternative severity class schemes – BSI Vulnerability Traffic Light and PCI-DSS – have been removed.

Some devices – especially IoT devices – can crash when scanned across multiple IP addresses simultaneously. This can happen, for example, if the device is connected over IPv4 and IPv6. With GOS 21.04, it is possible to avoid scanning over multiple IP addresses at the same time by using the new setting Allow simultaneous scanning via multiple IPs when creating a target.

See for Yourself!

Check out our new features and changes for yourself! New appliances with GOS 21.04 are now available and existing appliances can also be upgraded to the latest version. Also our free trial version can be used with GOS 21.04.

Contact Free Trial Buy Here Back to overview

SiSyPHuS Win10 is a project of the German Federal Office for Information Security (BSI).
Based on an analysis of the security-critical functions in the operating system Microsoft Windows 10, recommendations for action to harden it were developed. These recommendations are now also part of the Greenbone Security Feed in the form of a compliance guideline and Greenbone customers can conveniently check them directly with the Greenbone appliances.

The measures include configuration recommendations, password policies, encryption requirements and, of course, updates. They help to make Windows 10 systems significantly more secure. By integrating the compliance policy into the Greenbone Security Feed, the measures can be easily integrated into the Greenbone Vulnerability Management audit routines.

More information can be found here.

Contact Free Trial Buy Here Back to overview

We are pleased to inform you that the latest version of our operating system Greenbone OS is now available! We have taken many of your wishes into account: the focus of the improvement was the scanning of large networks with many scan results and extensive reports. Among other things, GOS 21.04 offers new hardware, an improvement of host detection and clearer reports.


Delivering the best vulnerability management to our customers – this goal has always been at the core of our products. With the new release of our operating system Greenbone OS, we stay true to this claim and make our products more powerful: especially for large networks with many distributed branch offices, scanning with GOS 21.04 is faster and the scan results are even clearer.

More powerful and faster hardware for the Midrange Class

In large networks, several distributed medium-sized to large appliances are usually used, linked together via a master-sensor setup. For this reason, the Midrange Class hardware appliances have been strengthened by improving their hardware.

Our new hardware now uses SSD-type hard disks instead of HDD, which are 10 times faster, quieter and lighter. There is also more storage space available. The RAM has also been improved: instead of DDR3, it is now DDR4, which is much faster due to a higher clock rate (3200 MHz). Furthermore, twice to four times as much working memory is available than before. In addition, the hardware received new, faster CPU of the latest generation and also the ports of the appliances were updated: instead of 6 ports GbE-Base-TX and 2 ports 1 GbE SFP there are now 8 ports GbE-Base-TX and 2 ports 10 GbE SFP+.

Boreas Alive Scanner for faster availability of results now as standard

Scanning is also getting faster – which is especially helpful in large networks. GOS 20.08 already introduced the Boreas Alive Scanner, a host alive scanner that identifies the active hosts in a target network. With GOS 21.04, the Boreas Alive Scanner becomes standard, eliminating the need for manual activation.

The Boreas Alive Scanner is not limited in terms of the maximum number of simultaneous alive scans it can perform, making it faster than its predecessor Nmap. This significantly reduces the scanning time for large networks. Initial scan results are available faster, regardless of the percentage of reachable hosts in the network.

Clearer reports thanks to new report formats

The evaluation of scans is also clearer – thanks to new report formats. With the Vulnerability Report format as PDF and as HTML, the reports are clearly structured and easy to read. Specific information relevant to the target group can be quickly identified and understood.

See for Yourself

Scanning with GOS 21.04 is even faster, more reliable and clearer. Convince yourself of our new features and changes! New appliances with GOS 21.04 are available now. For existing appliances, the upgrade to the latest version will be available next week. Also our free trial version will be usable with GOS 21.04 then.

Contact Free Trial Buy Here Back to overview

Compliance Policies are used by companies, organizations, or authorities to check whether all products, applications, operating systems and other components used meet certain specifications. The Center for Internet Security (CIS) provides so-called CIS benchmarks for this purpose. Since March 2021, the Greenbone solutions also offer the possibility to check the fulfillment of CIS Benchmarks – with the help of new compliance policies.

But what do we actually mean by a compliance policy?

In addition to legal requirements, companies, organizations and authorities often have their own requirements that must be met for the secure configuration of a system. Such requirements can be formulated, for example, by a software or application vendor for its own products, but also by IT security organizations.

The aim is to ensure the information and data security of a company or an authority by guaranteeing the confidentiality, integrity, availability and authenticity of information.

All specifications and guidelines, but also recommendations to be fulfilled for this purpose, are bundled in a policy in written form.

These guidelines form the basis for compliance policies developed by Greenbone, i.e., for the collection of tests that a Greenbone solution runs on a target system. A vulnerability test is developed for each individual requirement or recommendation to check compliance with that requirement or recommendation. All tests are combined to scan configurations by Greenbone and added to the Greenbone Security Feed.

Since the scan configurations in this case map company or authority guidelines, they are referred to as “compliance policies”.


Example: A company issues a policy with the following requirements:

  • Version 2 of software A is installed on the target system
  • SSH is enabled on the target system
  • Software B is not installed on the target system

For each of the requirements, Greenbone develops a vulnerability test that queries whether the respective condition is met.

The three tests are then combined into a compliance policy that a user of Greenbone solutions can select for running a vulnerability scan. During the scan, it is then checked whether the conditions listed above are met on the target system.


 CIS Benchmarks as decisive security guidelines

The Center for Internet Security (CIS) also publishes such security guidelines: the so-called CIS Benchmarks. CIS is a non-profit organization founded in 2000 to provide best practices for IT security that are used by governments, industry and academia.

One of the largest fields of activity of the organization is the so-called CIS Benchmarks. These are recommendations for handling and configuring numerous products from a wide range of product families. For example, there are CIS benchmarks for web browsers such as Mozilla Firefox or Google Chrome, for operating systems like Microsoft Windows or different Linux distributions, but also for the Microsoft Office products.

In contrast to many other security standards, which only make basic specifications regarding IT security – for example, that there must be vulnerability management – the CIS benchmarks are very detailed. They provide requirements that must be met in order to harden a system, i.e. make it more secure and protect it against attacks. Among other things, this can include criteria for passwords, but also the specification for a certain installed software version.

The CIS Benchmarks are provided by CIS free of charge as a PDF and are constantly being expanded. For CIS SecureSuite Members – just like Greenbone is since 2021 – the CIS Benchmarks are also available via the CIS Workbench in other formats, for example for Microsoft Word or Excel.

CIS-certified Compliance Policies at Greenbone

As with the security policies of other companies, organizations or authorities, Greenbone has now developed own compliance policies based on the CIS benchmarks. These enable users of a Greenbone solution to check their networks, systems and applications against the requirements from the CIS benchmarks. Since March 2021, several compliance policies that map CIS benchmarks are included in the Greenbone Security Feed.

And the special thing about it: the compliance policies developed by Greenbone are certified by CIS! This means that users can be sure that their system is tested according to the hardening recommendations of CIS.

Users can now check their systems to see whether the CIS requirements are met. This also simplifies the preparation of audits. Important criteria can already be checked in advance with a scan by a greenbone solution and any weaknesses found can be eliminated.

But these CIS certified compliance policies will not be the end of the story. Many more policies that map CIS Benchmarks are in the planning or even already in development at Greenbone.

Contact Free Trial Buy Here Back to overview

The water sector is one of the critical infrastructures (CRITIS). A successful attack on the sector can lead to significant hygiene and health problems and, in the worst case, threaten human lives. At the 6th VDI conference on “Optimizing Industrial Wastewater Treatment Plants”, Greenbone will provide information on vulnerability management in the water sector and how the attack surface of IT infrastructures can be reduced by early detection and elimination of vulnerabilities.

Everything Fine Thanks to Digitization?

Digitization is seen as the savior of the hour. Even if this may be viewed critically at times, this development cannot be stopped. There are simply too many reasons in favor of digitization. But there are also many reasons that we need to take a critical look at, especially where our security is concerned. The more information technology we put in place, the more digitized attack surfaces we offer.
Malicious users of these attack surfaces can operate globally, and likewise digitized currencies like Bitcoin allow them to profit from vulnerabilities globally as well.

Unlike a bank robbery, an attack on an industrial wastewater facility is more of a a means to an end. The attacker does not want the contents of a safe, but rather targets the vulnerability as such in order to gain advantages, usually through blackmail. Not only technical systems themselves are attacked, but often also the technical and organizational environment from networks to administration. These attackers are not hackers with hoodies and matrix screen savers who just happen to have emergency on their account, but criminal organizations that are industrially and professionally organized. We must arm ourselves against them with resilient organizations, processes and solutions. This brings the topic of cyber resilience more and more to our attention.

Cyber resilience is the ability of a company or organization to maintain its business processes despite adverse cyber circumstances. These can be cyber attacks, but also unintentional obstacles such as a failed software update or human error. Cyber resilience is a comprehensive concept that goes beyond IT security. It combines the areas of information security, business continuity, and organizational resilience. To achieve a state of cyber resilience, it is important to identify vulnerabilities early, prioritize them economically, and eliminate them.


Why Cyber Resilience Is Particularly Important for Critical Infrastructures

Sustainable cyber resilience is important for companies in all industries. But it is indispensable in the area of critical infrastructure (CRITIS). As defined by the German government, this includes “organizations or facilities of critical importance to the state community, the failure or impairment of which would result in sustained supply shortages, significant disruptions to public safety, or other dramatic consequences.”

CRITIS organizations must therefore protect themselves particularly well against cyber attacks – this is required by law. The EU launched the European Programme for Critical Infrastructure Protection (EPCIP) back in 2006 and expanded and supplemented it in subsequent years. Member states are implementing the EU NIS directive in national law, Germany for instance with the IT Security Act (IT-SIG). Large economic nations have already developed regulatory bodies. In the U.S., for example, this is the National Institute of Standards and Technology (NIST) and in Germany the Federal Office for Information Security (BSI).

In Germany, the critical infrastructures are divided into 9 sectors. One of these is the water sector with the divisions of public water supply and wastewater disposal. It includes, for example, waterworks, pumping stations, water pipelines and networks, wastewater treatment plants, the sewerage system, and dam and flood protection facilities. They all play a critical role in our society.

Attacks on the water supply could therefore hit a society to the core and, in the worst case, threaten human lives. Attacks on the wastewater disposal system are just as dangerous. If it no longer functions, the result would be considerable hygienic and health problems. Since the water infrastructure uses many IT systems and electronic control systems (ICS) nowadays, it becomes an attractive target for hackers.

Incidents Show the Vulnerability of the Water Sector

In recent years, there have been numerous attacks on water infrastructures worldwide. Fortunately, there have been no serious consequences so far. However, the attacks show that hackers are exploring how to take control of control systems and prepare further attacks. In 2013, for example, Iranian hackers attempted to penetrate the systems of the Bowman Avenue Dam near the town of Rye Brooke, near New York. The dam is used to control the flow of water after heavy rains and prevent flooding of the town. The hackers managed to gain control over the flood gates’ control system. However, as these were currently offline due to maintenance, the cyber criminals were fortunately unable to cause any damage.

In March 2016, security specialist Verizon reported a cyber attack on a U.S. water utility known by the pseudonym Kemuri Water Company in its monthly Security Breach Report. Hackers had penetrated the SCADA platform. This allowed them to manipulate programmable logic controllers. They changed settings on the water flow and the amount of chemicals added for water treatment. Fortunately, the water utility quickly discovered the incident and was able to correct the settings without causing any major damage. For their attack, the hackers exploited an unpatched vulnerability in the customer payment portal.

Between November 2016 and January 2017, cyber criminals hacked several wireless routers at a U.S. water agency. The routers were used to provide secure wireless access for pump station monitoring. Fortunately, however, the attackers were not looking to sabotage, but were targeting the agency’s Internet resources. Their bill rose from an average of $ 300 per month to a whopping $ 45,000 in December and $ 53,000 in January. For their attack, the hackers exploited a vulnerability in the routers of the manufacturer Sixnet. According to its own information, Sixnet had already made a patch available in May, but the authority had not installed it.

Over the past year, Israel has been the victim of multiple cyber attacks on water supply and treatment facilities. In April, hackers undertook a major cyber attack on control and monitoring systems at wastewater treatment plants, pumping stations and sewers, the Israeli National Cyber Directorate (INCD) said in a statement. The INCD then demanded companies in the water sector to change passwords for all systems connected to the Internet-connected systems and to ensure that control system software is up-to-date. The hackers attempted to change the chlorine content of water at a water treatment plant. The attack was not successful. Had it been, it could have resulted in mild intoxication of the population served by the treatment plant. Back in June, there were two more attacks on Israel’s water facilities. This time, agricultural water pumps were affected.

Although there has not yet been a comparable incident in Germany, the Federal Office for Information Security (BSI) reports about the implementation of the necessary organizational and technical precautions to prevent disruptions in its current report on the state of IT security in Germany. In the water sector, this reveals deficiencies in the areas of network separation, emergency management and physical security. In the reporting period from June 2019 to May 2020, there were several incidents in the water sector in Germany that were due to faults in control components. Remediation of the malfunctions was very lengthy and costly. Damage was avoided by operators acting prudently and having redundancies in place.

Attack Points in the Water Sector

IT and OT systems support the water cycle. In water production (1), quality control systems and digital pump control are used to manage water inflow from various sources towards water distribution (2). Digital metering and control methods monitor water pressure and quality in the water network and are thus part of the overall IT attack surface. In sewage systems (3), wastewater pumps and pre-treatments by filters, which are monitored at central points, are used. Water treatment (4) is a critical component due to the necessary digitalized control of physical, chemical and biological processes.

Many networked IT systems and industrial control systems are therefore used in drinking water supply and wastewater disposal, enabling largely automated processes. Examples include sensors for temperature, flow rate, or chlorine content, remotely readable meters, and web portals and mobile apps for customers.

Challenges for Cyber Resilience in the Water Sector

To reduce their attack surface for cyber criminals, water sector organizations must consider the full range of networked systems, devices and applications.

But this is not always easy. One problem is that the ICSs used in the water infrastructure come from different generations. Many of the older control systems were developed at a time when little or no consideration was given to cyber security. This leads to a heterogeneous, vulnerable IT landscape. Additionally, the high degree of automation and dependence on industrial controls makes water infrastructure particularly vulnerable to attack. Furthermore, the IT systems in use are becoming increasingly complex. This makes it difficult for companies to achieve a sufficient level of protection. The increasing networking of components within the field and control level as well as the control and process control technology increases the complexity even further.  At the same time, this increases the attack surface for hackers. They have more and more opportunities to penetrate networks, steal data or manipulate industrial controls.

Even Previously Unexploited Vulnerabilities Should Not Be Underestimated

A recent study by Kenna Security found that the total number of vulnerabilities discovered per year has increased from 4,100 in 2011 to 17,500 in 2021. On the other hand, the percentage of vulnerabilities exploited by hackers has not grown at the same rate. What is the reason for this?

Cyber crime follows the same economic rules as any other business model: least investment for maximum result. But cyber crime also suffers from the same problem as the IT industry in general: experts are a limited resource.

Companies cannot change this initial situation, but they can ensure that their attack surface is reduced. Tolerating a large attack surface, even if the vulnerabilities are not yet weaponized, is replacing control with gambling. As soon as it seems cheaper for cyber criminals or the outcome is promising, cyber crime will focus on vulnerabilities that are not yet weaponized, and the conversion of vulnerabilities into weapons will happen quickly.

Even worse is the motivation of cyber terrorists, who have so far been fortunately unsuccessful due to a lack of expertise. It is unclear whether they will gain the necessary skills and if so, when. But they do not follow the rules of economics, which makes them less predictable in selecting targets and suitable weaponized vulnerabilities.

In essence, there are two good general reasons why organizations should establish a process to manage and minimize their entire attack surface and not just focus on current (or likely) weaponizable vulnerabilities:

  • Pandemic risk: while it may not be attractive for a single criminal organization to invest in turning a more expensive vulnerability into a weapon, the more organizations choose not to do anything about that vulnerability, the more interesting it becomes. The fewer that are vaccinated, the better the pandemic spreads.
  • Automation risk: automating exploits is not only an attractive, cost-effective way to go. It significantly reduces the window of opportunity to respond with countermeasures.

Reduced Attack Surface with Vulnerability Management

Regardless of how many vulnerabilities exist, managing damage and actively countering ongoing attacks becomes exponentially expensive for organizations if not accompanied by an ongoing process that identifies, manages and reduces the attack surface.

Cyber resilience is a continuous process. It strengthens an organization’s ability to withstand an attack and enables it to continue to function during an attack. To achieve this, it is important to reduce the attack surface and thus stabilize the base. This means identifying vulnerabilities that could be exploited by an attacker and thus staying one step ahead of the attacker.

999 out of 1,000 vulnerabilities have been known for over a year. With vulnerability management, this means that these vulnerabilities can be identified and eliminated before they are exploited by an attacker. This greatly reduces the attack surface of the IT infrastructure.

Vulnerability management systems are fully automated and, thanks to features such as schedules and custom scan configurations, offer users the ability to create complete vulnerability management processes that constantly scan for vulnerabilities. As a result, vulnerability management ensures more resilient systems in the long term.


Contact Free Trial Buy Here Back to Overview

Are there actually independent reviews of Greenbone solutions?
Of course – we are proud to present the latest report from a leading industry magazine: “IT-Administrator tried the system [solution from Greenbone] and was thrilled with its functionality”. (IT Administrator 01/2021)

In September 2020, the magazine IT-Administrator – a German professional journal for system and network administration – asked Greenbone if they could write a test report about a Greenbone appliance.

The report is currently published in the January issue of the magazine. Here you can read the detailed report.

In the test, IT-Administrator took a closer look at the GSM 150. The GSM 150 is a physical appliance designed for vulnerability management in small to medium-sized businesses, or organizations with medium-sized branch offices. It scans up to 500 IP addresses within 24 hours and can also be used as a sensor for larger appliances.

Everything that must be done in a standard deployment of a Greenbone Security Manager was tested: from the initial setup via the console, to configuring scans on the web interface, to evaluating a scan report.

For testing the vulnerability scans, IT-Administrator had prepared different target systems with different security status to examine the differences in the results. Authenticated scans were also part of the test.

Read the full article here (German only).

Contact Free Trial Buy Here Back to overview