Schlagwortarchiv für: CVE

Trotz des Ausfalls der „National Vulnerability Database” (NVD) des amerikanischen „National Institute of Standards and Technology“ (NIST) ist die Greenbone-Engine zur Erkennung von Schwachstellen weiterhin voll funktionsfähig. Sie bietet zuverlässige Schwachstellen-Scans, ohne auf fehlende CVE-Anreicherungsdaten angewiesen zu sein.

Seit 1999 stellt die MITRE Corporation mit Common Vulnerabilities and Exposures (CVE) kostenlose öffentliche Informationen über Schwachstellen zur Verfügung, indem sie Informationen über Software-Schwachstellen veröffentlicht und verwaltet. Das NIST hat diese CVE-Berichte seit 2005 fleißig erweitert und mit Kontext angereichert, um die Bewertung von Cyberrisiken zu verbessern. Anfang 2024 wurde die Cybersecurity-Gemeinschaft überrascht, als die NIST-NVD zum Stillstand kam. Etwa ein Jahr später war der Ausfall noch immer nicht vollständig behoben [1][2]. Bei einer jährlich steigenden Zahl von CVE-Einreichungen haben die Schwierigkeiten des NIST dazu geführt, dass ein großer Prozentsatz ohne Kontext blieb, wie z. B. bei der Bewertung des Schweregrads (CVSS), den Listen betroffener Produkte (CPE) und den Einstufungen von Schwachstellen (CWE).

Die jüngsten von der Trump-Administration angestoßenen politischen Veränderungen haben die Unsicherheit über die Zukunft des Austauschs von Schwachstelleninformationen und der vielen Sicherheitsanbieter, die davon abhängig sind, vergrößert. Der Haushaltsplan für das Geschäftsjahr der CISA enthält bemerkenswerte Kürzungen in bestimmten Bereichen, wie z. B. 49,8 Millionen Dollar weniger für Beschaffung, Bau und Verbesserungen sowie 4,7 Millionen Dollar weniger für Forschung und Entwicklung. Als Reaktion auf die Finanzierungsprobleme hat die CISA Maßnahmen zur Kürzung der Ausgaben ergriffen, darunter Anpassungen bei Verträgen und Beschaffungsstrategien.

Um es klar zu sagen: Das CVE-Programm ist noch nicht ausgefallen. Am 16. April erließ die CISA in letzter Minute eine Anweisung, ihren Vertrag mit MITRE zu verlängern, um den Betrieb des CVE-Programms für weitere elf Monate sicherzustellen, nur wenige Stunden bevor der Vertrag auslaufen sollte. Niemand kann jedoch vorhersagen, wie sich die zukünftigen Ereignisse entwickeln werden. Die potenziellen Auswirkungen auf den Austausch von Informationen sind alarmierend und deuten vielleicht auf eine neue Dimension von „kaltem Cyberkrieg“ hin.

Dieser Artikel enthält einen kurzen Überblick über die Funktionsweise des CVE-Programms und darüber, wie die Erkennungsfunktionen von Greenbone auch während des NIST NVD-Ausfalls aufrechterhalten werden.

Ein Überblick über den Betrieb des CVE-Programms

Die MITRE Corporation ist eine gemeinnützige Organisation, die die Aufgabe hat, die innere Sicherheit der USA an mehreren Fronten zu unterstützen, einschließlich der Verteidigungsforschung zum Schutz kritischer Infrastrukturen und der Cybersicherheit. MITRE betreibt das CVE-Programm, fungiert als primäre CNA (CVE Numbering Authority) und unterhält die zentrale Infrastruktur für die CVE-ID-Zuweisung, die Veröffentlichung von Datensätzen, die Kommunikationsabläufe zwischen allen CNAs und ADPs (Authorized Data Publishers) sowie die Programmverwaltung. MITRE stellt der Öffentlichkeit CVE-Daten über die Website CVE.org und das GitHub-Repository cvelistV5 zur Verfügung, das alle CVE-Datensätze im strukturierten JSON-Format enthält. Das Ergebnis ist eine hocheffiziente, standardisierte Berichterstattung zu Schwachstellen und ein nahtloser Datenaustausch im gesamten Cybersicherheitsökosystem.

Nachdem eine Schwachstellen-Beschreibung von einem CNA an MITRE übermittelt wurde, hat das NIST in der Vergangenheit immer etwas hinzugefügt:

  • CVSS (Common Vulnerability Scoring System): Ein Schweregrad und ein detaillierter Vektorstring, der den Risikokontext für Angriffskomplexität (AC), die Auswirkungen auf Vertraulichkeit (C), Integrität (I) und Verfügbarkeit (A) sowie andere Faktoren enthält.
  • CPE (Common Platform Enumeration): Eine speziell formatierte Zeichenfolge, die zur Identifizierung betroffener Produkte dient, indem sie den Produktnamen, den Hersteller, die Versionen und andere architektonische Spezifikationen weitergibt.
  • CWE (Common Weakness Enumeration): Eine Ursachenklassifizierung nach der Art des betreffenden Softwarefehlers.

CVSS ermöglicht es Unternehmen, den Grad des Risikos einer bestimmten Schwachstelle leichter zu bestimmen und dementsprechend strategische Abhilfemaßnahmen zu ergreifen. Da die ersten CVE-Berichte nur eine nicht standardisierte Deklaration des betroffenen Produkts erfordern, ermöglicht es die Ergänzung von CPE durch NIST den Plattformen für das Schwachstellenmanagement, den CPE-Abgleich als schnelle, wenn auch etwas unzuverlässige Methode durchzuführen, um festzustellen, ob eine CVE in der Infrastruktur eines Unternehmens existiert oder nicht.

Einen detaillierteren Einblick in die Funktionsweise des Verfahrens zur Offenlegung von Schwachstellen und wie CSAF 2.0 eine dezentralisierte Alternative zum CVE-Programm von MITRE bietet, finden Sie in unserem Artikel: Wie CSAF 2.0 automatisiertes Schwachstellenmanagement vorantreibt. Als Nächstes wollen wir uns den NIST NVD-Ausfall genauer ansehen und verstehen, was Greenbones Erkennung gegen diesen Ausfall widerstandsfähig macht.

Der NIST-NVD-Ausfall: Was ist passiert?

Seit dem 12. Februar 2024 hat die NVD die Anreicherung von CVEs mit wichtigen Metadaten wie CVSS-, CPE- und CWE-Produktkennungen drastisch reduziert. Das Problem wurde zuerst vom VP of Security von Anchore erkannt. Im Mai 2024 waren etwa 93 % der nach dem 12. Februar hinzugefügten CVEs nicht angereichert. Im September 2024 hatte das NIST seine selbst gesetzte Frist nicht eingehalten; 72,4 % der CVEs und 46,7 % der neu hinzugefügten KEVs (Known Exploited Vulnerabilities) der CISA waren immer noch nicht angereichert [3].

Die Verlangsamung des NVD-Anreicherungsprozesses hatte erhebliche Auswirkungen auf die Cybersecurity-Gemeinschaft, nicht nur, weil angereicherte Daten für Verteidiger entscheidend sind, um Bedrohungen effektiv zu priorisieren, sondern auch, weil einige Schwachstellen-Scanner auf diese angereicherten Daten angewiesen sind, um ihre Erkennungstechniken einzusetzen.

Als Verteidiger der Cybersicherheit lohnt es sich zu fragen: War Greenbone vom Ausfall des NIST NVD betroffen? Die kurze Antwort lautet: Nein. Lesen Sie weiter, um herauszufinden, warum die Erkennungsfähigkeiten von Greenbone gegen den NIST NVD-Ausfall resistent sind.

Greenbone-Erkennungsrate trotz NVD-Ausfall hoch

Ohne angereicherte CVE-Daten werden einige Lösungen für das Schwachstellenmanagement unwirksam, da sie auf den CPE-Abgleich angewiesen sind, um festzustellen, ob eine Schwachstelle in der Infrastruktur eines Unternehmens vorhanden ist.  Greenbone ist jedoch gegen den Ausfall der NIST NVD gewappnet, da unsere Produkte nicht vom CPE-Abgleich abhängen. Die OPENVAS-Schwachstellentests von Greenbone können auf der Grundlage von nicht angereicherten CVE-Beschreibungen erstellt werden. Greenbone erkennt sogar bekannte Schwachstellen und Fehlkonfigurationen, für die es nicht einmal CVEs gibt, wie z. B. CIS-Compliance Benchmarks [4][5].

Für die Erstellung von Schwachstellentests (VT) beschäftigt Greenbone ein engagiertes Team von Software-Ingenieuren, die die zugrunde liegenden technischen Aspekte von Schwachstellen identifizieren. Greenbone verfügt über eine CVE-Scanner-Funktion, die einen herkömmlichen CPE-Abgleich ermöglicht. Im Gegensatz zu Lösungen, die sich ausschließlich auf die CPE-Daten der NIST NVD stützen, um Schwachstellen zu identifizieren, setzt Greenbone jedoch Erkennungstechniken ein, die weit über den grundlegenden CPE-Abgleich hinausgehen. Daher bleiben die Fähigkeiten von Greenbone zur Erkennung von Schwachstellen auch angesichts von Herausforderungen wie dem jüngsten Ausfall der NIST NVD robust.

Um eine hoch belastbare, branchenführende Schwachstellen-Erkennung  zu erreichen, interagiert die Greenbone-Komponente OPENVAS Scanner aktiv mit exponierten Netzwerkdiensten, um eine detaillierte Karte der Angriffsfläche eines Zielnetzwerks zu erstellen. Dies beinhaltet die Identifizierung von Diensten, die über Netzwerkverbindungen zugänglich sind, die Untersuchung dieser Dienste zur Ermittlung von Produkten und die Ausführung individueller Schwachstellentests (VT) für jede CVE- oder Nicht-CVE-Sicherheitslücke, um aktiv zu überprüfen, ob diese vorhanden sind. Der Enterprise Vulnerability Feed von Greenbone enthält über 180.000 VTs, die täglich aktualisiert werden, um die neuesten veröffentlichten Schwachstellen zu identifizieren und eine schnelle Erkennung der neuesten Bedrohungen zu gewährleisten.

Zusätzlich zu seinen aktiven Scan-Funktionen unterstützt Greenbone die agentenlose Datenerfassung über authentifizierte Scans. Greenbone sammelt detaillierte Informationen von den Endpunkten und bewertet die installierten Softwarepakete anhand der veröffentlichten CVEs. Diese Methode ermöglicht eine präzise Erkennung von Schwachstellen, ohne auf die angereicherten CPE-Daten der NVD angewiesen zu sein.

Wichtige Erkenntnisse:

  • Unabhängigkeit von angereicherten CVE-Daten: Die Schwachstellenerkennung von Greenbone ist nicht auf angereicherte CVE-Daten angewiesen, die von der NVD des NIST bereitgestellt werden, wodurch eine unterbrechungsfreie Leistung bei Ausfällen gewährleistet ist. Anhand einer grundlegenden Beschreibung einer Schwachstelle können die Ingenieure von Greenbone ein Erkennungsmodul entwickeln.
  • Erkennung über CPE-Abgleich hinaus: Obwohl Greenbone eine CVE-Scanner-Funktion für den CPE-Abgleich enthält, gehen die Erkennungsfähigkeiten weit über diesen grundlegenden Ansatz hinaus und nutzen mehrere Methoden, die aktiv mit Scan-Zielen interagieren.
  • Angriffsflächen-Mapping: Der OPENVAS-Scanner interagiert aktiv mit exponierten Diensten, um die Angriffsfläche des Netzwerks abzubilden und alle im Netzwerk erreichbaren Dienste zu identifizieren. Greenbone führt auch authentifizierte Scans durch, um Daten direkt von den Interna der Endpunkte zu sammeln. Diese Informationen werden verarbeitet, um verwundbare Pakete zu identifizieren. Angereicherte CVE-Daten wie CPE sind nicht erforderlich.
  • Widerstandsfähigkeit bei Ausfällen der NVD-Anreicherung: Die Erkennungsmethoden von Greenbone bleiben auch ohne NVD-Anreicherung wirksam, da sie die von CNAs bereitgestellten CVE-Beschreibungen nutzen, um genaue aktive Prüfungen und versionsbasierte Schwachstellenbewertungen zu erstellen.

Greenbones Ansatz: praktisch, wirksam und widerstandsfähig

Greenbone ist ein Beispiel für den Gold-Standard in Bezug auf Praktikabilität, Effektivität und Widerstandsfähigkeit und setzt damit einen Maßstab, den IT-Sicherheitsteams anstreben sollten. Durch den Einsatz von aktivem Netzwerk-Mapping, authentifizierten Scans und aktiver Interaktion mit der Zielinfrastruktur gewährleistet Greenbone zuverlässige, belastbare Erkennungsfunktionen in unterschiedlichen Umgebungen.

Dieser höhere Standard ermöglicht es Unternehmen, Schwachstellen selbst in komplexen und dynamischen Bedrohungslandschaften sicher zu erkennen. Auch ohne NVD-Anreicherung bleiben die Erkennungsmethoden von Greenbone effektiv. Mit nur einer allgemeinen Beschreibung können die VT-Ingenieure von Greenbone genaue aktive Prüfungen und produktversionsbasierte Schwachstellenbewertungen entwickeln.

Durch einen grundlegend robusten Ansatz zur Erkennung von Schwachstellen gewährleistet Greenbone ein zuverlässiges Schwachstellenmanagement und hebt sich damit von anderen Anbietern im Bereich der Cybersicherheit ab.

Alternativen zu NVD / NIST / MITRE

Die MITRE-Problematik ist ein Weckruf für die digitale Souveränität, und die EU hat bereits (und schnell) reagiert. Eine lang erwartete Alternative, die EuVD der ENISA, der Agentur der Europäischen Union für Cybersicherheit, ist nun verfügbar und wird in einem unserer nächsten Blogbeiträge vorgestellt.

Wem sollten Sie vertrauen, wenn es darum geht, Ihre Organisation vor digitalen Bedrohungen zu schützen? Realität ist, dass eine hoch belastbare IT-Sicherheit aus einem Netzwerk starker Partnerschaften, tiefgreifender Verteidigungsmaßnahmen, mehrstufiger Sicherheitskontrollen und regelmäßiger Audits besteht. Diese Maßnahmen müssen kontinuierlich überwacht, gemessen und verbessert werden. Schwachstellenmanagement war zwar schon immer eine zentrale Instanz für die Sicherheit, ist aber dennoch ein sich schnell veränderndes Instrument. Im Jahr 2025 hat die kontinuierliche und priorisierte Eindämmung von Bedrohungen einen großen Einfluss auf die Schutzwirkung, da die Zeit immer kürzer wird, in der eine Sicherheitslücke von Angreifern ausgenutzt wird.

Im Threat Report vom März heben wir die Bedeutung des Schwachstellenmanagements und der branchenführenden Erkennungsrate von Greenbone hervor, indem wir die neuesten kritischen Bedrohungen untersuchen. Aber diese neuen Bedrohungen sind nur die Spitze des Eisbergs. Im März 2025 hat Greenbone 5.283 neue Schwachstellentests zum Enterprise Feed hinzugefügt. Sehen wir uns einige der wichtigen Erkenntnisse aus einer hochaktiven Bedrohungslandschaft an!

Einbruch ins US-Finanzministerium: Wie kam es dazu?

Ende Dezember 2024 gab das US-Finanzministerium bekannt, dass staatlich unterstützte chinesische Hacker sein Netzwerk angegriffen hatten. Daraufhin verhängte es Anfang Januar 2025 Sanktionen. Bei forensischen Untersuchungen stieß man auf einen gestohlenen BeyondTrust-API-Schlüssel als Ursache. Der Anbieter hat bestätigt, dass 17 weitere Kunden von diesem Fehler betroffen waren. Eingehendere Untersuchungen ergaben, dass der API-Schlüssel unter Ausnutzung einer Sicherheitslücke in einer Funktion zur Umgehung nicht vertrauenswürdiger Eingaben innerhalb von PostgreSQL gestohlen wurde.

Wenn eine ungültige zwei Byte lange UTF-8-Zeichenfolge an eine anfällige PostgreSQL-Funktion übermittelt wird, wird nur das erste Byte umgangen, sodass ein einfaches Anführungszeichen ohne Bereinigung durchgelassen wird, was zum Auslösen eines SQL-Injection-Angriffs [CWE-89] genutzt werden kann. Die ausnutzbaren Funktionen sind PQescapeLiteral(), PQescapeIdentifier(), PQescapeString() und PQescapeStringConn(). Alle Versionen von PostgreSQL vor 17.3, 16.7, 15.11, 14.16 und 13.19 sind betroffen, ebenso wie zahlreiche Produkte, die von diesen Funktionen abhängen.

CVE-2024-12356, (CVSS 9.8) und CVE-2024-12686, (CVSS 7.2) wurden für BeyondTrust Privileged Remote Access (PRA) und Remote Support (RS) herausgegeben, und CVE-2025-1094 (CVSS 8.1) befasst sich mit dem Fehler in PostgreSQL. Das Problem ist Gegenstand mehrerer nationaler CERT-Hinweise, darunter der deutsche BSI Cert-Bund (WID-SEC-2024-3726) und das kanadische Centre for Cybersecurity (AV25-084). Die Schwachstelle wurde in die Liste der bekannten ausgenutzten Schwachstellen (KEV) der CISA (Cybersecurity and Infrastructure Security Agency) aufgenommen, und es ist ein Metasploit-Modul verfügbar, das anfällige BeyondTrust-Produkte ausnutzt – was das Risiko noch erhöht. Greenbone kann die oben genannten CVEs (Common Vulnerabilities and Exposures) sowohl in BeyondTrust-Produkten als auch in PostgreSQL-Instanzen erkennen, die für CVE-2025-1094 anfällig sind.

Advanced: 3,1 Millionen Pfund Geldstrafe wegen fehlender technischer Kontrollen

Diesen Monat verhängte das britische Information Commissioner’s Office (ICO) eine Geldstrafe in Höhe von 3,07 Millionen Britische Pfund gegen die Advanced Computer Software Group Ltd. gemäß der britischen Datenschutz-Grundverordnung (GDPR) wegen Sicherheitsmängeln. Der Fall ist ein Beispiel dafür, wie der durch einen Ransomware-Angriff verursachte finanzielle Schaden durch behördliche Geldbußen noch weiter verschärft werden kann. Der ursprünglich vorgeschlagene Betrag war mit 6,09 Millionen Britische Pfund sogar noch höher. Da das Opfer jedoch nach dem Vorfall mit dem NCSC (National Cyber Security Centre), der NCA (National Crime Agency) und dem NHS (National Health Service) kooperierte, wurde eine freiwillige Einigung in Höhe von 3.076.320 Pfund genehmigt. Die Betriebskosten und Erpressungszahlungen wurden zwar nicht öffentlich bekannt gegeben, dürften aber die Gesamtkosten des Vorfalls um weitere 10 bis 20 Millionen Pfund erhöhen.

Advanced ist ein bedeutender IT- und Softwareanbieter für Gesundheitsorganisationen, darunter auch der NHS. Im August 2022 wurde Advanced kompromittiert. Angreifer verschafften sich Zugang zu seiner Tochtergesellschaft für Gesundheit und Pflege, was zu einem schweren Ransomware-Vorfall führte. Durch den Verstoß wurden kritische Dienste wie NHS 111 unterbrochen und das Gesundheitspersonal daran gehindert, auf personenbezogene Daten von 79.404 Personen zuzugreifen, darunter auch sensible Pflegeinformationen.

Das ICO kam zu dem Schluss, dass Advanced zum Zeitpunkt des Vorfalls über eine unvollständige MFA-Abdeckung verfügte, keine umfassenden Schwachstellen-Scans durchführte und über mangelhafte Patch-Management-Praktiken verfügte – Faktoren, die zusammengenommen ein Versäumnis bei der Umsetzung angemessener technischer und organisatorischer Maßnahmen darstellten. Organisationen, die sensible Daten verarbeiten, müssen Sicherheitskontrollen als nicht verhandelbar betrachten. Unzureichendes Patch-Management ist nach wie vor eine der am häufigsten ausgenutzten Sicherheitslücken in modernen Angriffsketten.

Doppelte Gefahr: Die kritische Rolle von Backups beim Schutz vor Ransomware

Backups sind die letzte Verteidigungslinie einer Organisation gegen Ransomware, und die meisten hochentwickelten APT-Akteure (Advanced Persistent Threat) sind dafür bekannt, dass sie die Backups ihrer Opfer ins Visier nehmen. Sind die Backups kompromittiert, ist es wahrscheinlicher, dass Lösegeldforderungen gestellt werden. Im Jahr 2025 könnte dies Verluste in Höhe von mehreren Millionen Dollar bedeuten. Im März 2025 wurden zwei neue massive Bedrohungen für Backup-Dienste aufgedeckt: CVE-2025-23120, eine neue kritische Sicherheitslücke in Veeam, wurde bekannt, und es wurden Kampagnen beobachtet, die auf CVE-2024-48248 in NAKIVO Backup & Replication abzielten. Betroffene Systeme sollten daher dringend identifiziert und gepatcht werden.

Im Oktober 2024 warnte unser Threat Report vor einer weiteren Schwachstelle in Veeam (CVE-2024-40711), die für Ransomware-Angriffe ausgenutzt wird. Insgesamt ist es für CVEs in Veeam Backup and Replication sehr wahrscheinlich, aktiv für PoC-Exploits (Proof of Concept) und Ransomware-Angriffe verwendet zu werden. Hier sind die Details zu beiden neu auftretenden Bedrohungen:

  • CVE-2024-48248 (CVSS 8.6): Versionen von NAKIVO Backup & Replication vor 11.0.0.88174 ermöglichen nicht autorisierte Remote Code Execution (RCE) über eine Funktion namens getImageByPath, die das Lesen von Dateien remote ermöglicht. Dies schließt Datenbankdateien ein, die Klartext-Anmeldeinformationen für jedes System enthalten, mit dem NAKIVO eine Verbindung herstellt und es sichert. Eine vollständige technische Beschreibung und ein Proof of Concept sind verfügbar, weshalb diese Schwachstelle nun als aktiv ausgenutzt verfolgt wird.
  • CVE-2025-23120 (CVSS 9.9): Angreifer mit Domain User Access können die Deserialisierung von manipulierten Daten via .NET-Remoting auslösen. Veeam versucht, gefährliche Typen über eine Blacklist einzuschränken, aber Forscher haben schon ausnutzbare Klassen entdeckt, die nicht auf der Liste stehen, etwa xmlFrameworkDs und BackupSummary. Diese erweitern die DataSet-Klasse von .NET – ein bekannter RCE-Vektor – und ermöglichen die Ausführung von beliebigem Code als SYSTEM auf dem Backup-Server. Der Fehler ist Gegenstand nationaler CERT-Warnmeldungen weltweit, darunter HK, CERT.be, and CERT-In. Veeam empfiehlt ein Upgrade auf Version 12.3.1, um die Schwachstelle zu beheben. 

Greenbone kann anfällige NAKIVO- und Veeam-Instanzen erkennen. Unser Enterprise Feed verfügt über eine aktive Prüfung und Versionsprüfung für CVE-2024-48248 in NAKIVO Backup & Replication sowie über einen Remote-Versions-Check für den Softwarefehler in Veeam.

IngressNightmare: Unauthentifizierte Übernahme in 43 % der Kubernetes-Cluster

Kubernetes ist das weltweit beliebteste Tool zur Container-Orchestrierung in Unternehmen. Seine Ingress-Funktion ist eine Netzwerkkomponente, die den externen Zugriff auf Dienste innerhalb eines Clusters verwaltet, in der Regel HTTP- und HTTPS-Traffic. Eine Schwachstelle namens IngressNightmare hat schätzungsweise 43 % der Kubernetes-Cluster einem nicht authentifizierten Fernzugriff ausgesetzt – annähernd 6.500 Cluster, darunter auch Fortune-500-Unternehmen. 

Die Ursache sind überzogene Standardberechtigungen [CWE-250] und uneingeschränkter Netzwerkzugang [CWE-284] im Ingress-NGINX-Controller-Tool, das auf dem NGINX Reverse Proxy basiert. IngressNightmare ermöglicht es Angreifern, die vollständige und unbefugte Kontrolle über Workloads, APIs oder sensible Daten in Multi-Tenant- und Produktiv-Clustern zu erlangen. Eine vollständige technische Analyse ist bei den Forschern von Wiz erhältlich, die darauf hinweisen, dass Kubernetes-Admission-Controller standardmäßig ohne Authentifizierung direkt zugänglich sind und Hackern eine attraktive Angriffsfläche bieten.

Der vollständige Angriffsverlauf, um eine beliebige RCE gegen eine betroffene K8-Instanz zu erreichen, erfordert die Ausnutzung von Ingress-NGINX; zunächst CVE-2025-1974 (CVSS 9.8), um eine binäre Datenlast als Anfragetext hochzuladen. Sie sollte größer als 8 KB sein, während ein Content-Length-Header angegeben wird, der größer als die tatsächliche Inhaltsgröße ist. Dadurch wird NGINX veranlasst, den Anfragetext als Datei zu speichern, und der falsche Content-Length-Header bedeutet, dass die Datei nicht gelöscht wird, da der Server auf weitere Daten wartet [CWE-459].

In der zweiten Phase dieses Angriffs müssen CVE-2025-1097, CVE-2025-1098 oder CVE-2025-24514 (CVSS 8.8) ausgenutzt werden. Diese CVEs versagen alle in ähnlicher Weise bei der ordnungsgemäßen Bereinigung von Eingaben [CWE-20], die an Admission Controller übermittelt werden. Ingress-NGINX konvertiert Ingress-Objekte in Konfigurationsdateien und validiert sie mit dem Befehl nginx -t, sodass Angreifer eine begrenzte Anzahl von NGINX-Konfigurationsanweisungen ausführen können. Forscher fanden heraus, dass das Modul ssl_engine so angestoßen werden kann, dass es die in der ersten Phase hochgeladene Binärnutzlast der gemeinsam genutzten Bibliothek lädt. Obwohl die Ausnutzung nicht trivial ist und noch kein öffentlicher PoC-Code existiert, werden erfahrene Bedrohungsakteure die technische Analyse leicht in effektive Exploits umwandeln können.

Das Canadian Centre for Cyber Security hat eine CERT-Empfehlung (AV25-161) für IngressNightmare herausgegeben. Die gepatchten Ingress-NGINX-Versionen 1.12.1 und 1.11.5 sind verfügbar, und Anwender sollten so schnell wie möglich upgraden. Wenn ein Upgrade des Ingress NGINX Controllers nicht sofort möglich ist, können vorübergehende Zwischenlösungen helfen, das Risiko zu verringern. Strenge Netzwerkrichtlinien können den Zugriff auf die Admission Controller eines Clusters einschränken, sodass nur der Kubernetes API Server zugänglich ist. Alternativ kann die Admission Controller-Komponente von Ingress-NGINX vollständig deaktiviert werden.

Greenbone ist in der Lage, IngressNightmare-Schwachstellen mit einem aktiven Test zu erkennen, der das Vorhandensein aller oben genannten CVEs [1][2] überprüft.

CVE-2025-29927: Next.js Framework unter Beschuss

Eine neue Schwachstelle in Next.js, CVE-2025-29927 (CVSS 9.4), wird aufgrund der Beliebtheit des Frameworks und der Einfachheit der Ausnutzung als hohes Risiko eingestuft [1][2]. Das Risiko wird dadurch erhöht, dass Exploit Code als PoC öffentlich verfügbar ist und Forscher von Akamai bereits aktive Scans beobachtet haben, die das Internet nach anfälligen Apps durchsuchen. Mehrere nationale CERTs (Computer Emergency Response Teams) haben Warnmeldungen zu diesem Problem herausgegeben, darunter CERT.NZ, Australian Signals Directorate (ASD), das deutsche BSI Cert-Bund (WID-SEC-2025-062) und das kanadische Centre for Cyber Security (AV25-162).

Next.js ist ein React-Middleware-Framework für die Erstellung von Full-Stack-Webanwendungen. Middleware bezieht sich auf Komponenten, die zwischen zwei oder mehr Systemen sitzen und die Kommunikation und Orchestrierung übernehmen. Bei Webanwendungen wandelt Middleware eingehende HTTP-Anfragen in Antworten um und ist oft auch für die Authentifizierung und Autorisierung verantwortlich. Aufgrund von CVE-2025-29927 können Angreifer die Authentifizierung und Autorisierung der Next.js-Middleware umgehen, indem sie einfach einen schädlichen HTTP-Header setzen.

Wenn die Verwendung von HTTP-Headern für die Verwaltung des internen Prozessablaufs einer Webanwendung eine schlechte Idee zu sein scheint, ist CVE-2025-29927 der Beweis dafür. Da benutzerseitige Header nicht korrekt von internen Headern unterschieden wurden, sollte diese Schwachstelle den Status von eklatanter Fahrlässigkeit erhalten. Angreifer können die Authentifizierung umgehen, indem sie einfach den Header „x-middleware-subrequest“ zu einer Anfrage hinzufügen und ihn mit mindestens so vielen Werten wie der MAX_RECURSION_DEPTH (5) überladen. Zum Beispiel:

„x-middleware-subrequest: middleware:middleware:middleware:middleware:middleware“

Der Fehler wurde in den Next.js-Versionen 15.2.3, 14.2.25, 13.5.9 und 12.3.5 behoben. Benutzer sollten den Upgrade-Leitfaden des Anbieters befolgen. Wenn ein Upgrade nicht möglich ist, wird empfohlen, den Header „x-middleware-subrequest“ aus den HTTP-Anfragen zu filtern. Greenbone ist in der Lage, anfällige Instanzen von Next.js mit einer aktiven Überprüfung und einer Versionsprüfung zu erkennen.

Zusammenfassung

Die Bedrohungslandschaft im März 2025 war geprägt von anfälligen und aktiv ausgenutzten Backup-Systemen, unverzeihlich schwacher Authentifizierungslogik, hohen Bußgeldern und zahlreichen anderen kritischen Software-Schwachstellen. Vom Angriff auf das US-Finanzministerium bis hin zu den Folgen der Ransomware Advanced ist das Thema klar: Vertrauen fällt nicht vom Himmel. Die Widerstandsfähigkeit gegenüber Cyberkriminalität muss verdient werden; sie muss durch mehrstufige Sicherheitskontrollen gefestigt und durch Verantwortlichkeit untermauert werden. 

Greenbone spielt weiter eine entscheidende Rolle mit der Bereitstellung zeitnaher Erkennungstests für neu auftretende Bedrohungen und standardisierter Compliance-Audits, die eine Vielzahl von Unternehmensarchitekturen unterstützen. Organisationen, die der Cyberkriminalität immer einen Schritt voraus sein wollen, müssen ihre Infrastruktur proaktiv scannen und Sicherheitslücken schließen, sobald sie auftreten.

Cyber-Bedrohungen entwickeln sich in halsbrecherischem Tempo, aber die grundlegenden Schwachstellen, die Angreifer ausnutzen, bleiben auffallend unverändert. Für das Jahr 2025 haben viele Analysten einen Rückblick auf das Jahr 2024 und einen Ausblick auf das Jahr 2025 veröffentlicht. Die Kosten für Cyberverletzungen steigen, aber insgesamt haben sich die Ursachen für Cyberverletzungen nicht geändert. Phishing [T1566] und das Ausnutzen bekannter Software-Schwachstellen [T1190] stehen weiterhin ganz oben auf der Liste. Eine weitere wichtige Beobachtung ist, dass Angreifer öffentliche Informationen immer schneller als Waffe einsetzen und Enthüllungen von CVEs (Common Vulnerabilities and Exposures) innerhalb von Tagen oder sogar Stunden in brauchbaren Exploit-Code umwandeln. Sobald sie in das Netzwerk eines Opfers eingedrungen sind, führen sie ihre präzisen Absichten in der zweiten Phase ebenfalls schneller aus und setzen Ransomware innerhalb von Minuten ein.

In diesem Threat Report gehen wir kurz auf die aufgedeckten Chats der Ransomware-Gruppe Black Basta ein und werfen einen Blick darauf, wie Greenbone vor deren offengelegten Machenschaften schützt. Wir werden auch einen Bericht von Greynoise über die massenhafte Ausnutzung von Schwachstellen, eine neue, aktiv genutzte Schwachstelle in der Zimbra Collaboration Suite und neue Bedrohungen für Edge-Networking-Geräte unter die Lupe nehmen.

Das Zeitalter der tektonischen Technologien

Wenn Sicherheitskrisen wie Erdbeben sind, dann entspricht das globale Technologie-Ökosystem den zugrunde liegenden tektonischen Platten. Dieses Ökosystem lässt sich am besten als das Paläozoikum der Erdgeschichte darstellen. Die rasanten Innovations- und Wettbewerbskräfte des Markts schieben und zerren an der Struktur der IT-Sicherheit wie die kollidierenden Superkontinente von Pangäa; ständige Erdbeben zwingen die Kontinente zu permanenten Verschiebungen.

Völlig neue Computerparadigmen wie die generative KI und das Quantencomputing schaffen Vorteile und Risiken; Vulkane von Wert und instabilem Boden. Globale Regierungen und Tech-Giganten ringen um den Zugang zu den sensiblen persönlichen Daten der Bürger und erhöhen damit die Schwerkraft. Diese Kämpfe haben erhebliche Auswirkungen auf die Privatsphäre und die Sicherheit und beeinflussen letztendlich die Entwicklung der Gesellschaft. Hier sind einige der wichtigsten Kräfte, die die IT-Sicherheit heute destabilisieren:

  • Sich schnell entwickelnde Technologien treiben die Innovation voran und erzwingen den technischen Wandel.
  • Unternehmen sind zum einen gezwungen, sich zu ändern, da Technologien und Standards an Wert verlieren, und zum anderen sind sie motiviert, sich zu ändern, um am Markt fortzubestehen.
  • Der harte Wettbewerb beschleunigt die Produktentwicklung und die Veröffentlichungszyklen.
  • Strategisch geplante Obsoleszenz hat sich als Geschäftsstrategie zur Erzielung finanzieller Gewinne etabliert.
  • Der weit verbreitete Mangel an Verantwortlichkeit für Softwareanbieter hat dazu geführt, dass Leistung Vorrang vor dem Grundsatz „Security First“ hat.
  • Nationalstaaten setzen Waffentechnologien für Cyber Warfare, Information Warfare und Electronic Warfare ein.

Dank dieser Kräfte finden gut ausgestattete und gut organisierte Cyber-Kriminelle eine praktisch unbegrenzte Anzahl von Sicherheitslücken, die sie ausnutzen können. Das Zeitalter des Paläozoikums dauerte 300 Millionen Jahre. Hoffentlich müssen wir nicht so lange warten, bis die Produkthersteller Verantwortung zeigen und sichere Konstruktionsprinzipien anwenden [1][2][3], um sogenannte „unverzeihliche“ Schwachstellen durch Fahrlässigkeit zu verhindern [4][5]. Unternehmen müssen daher technische Flexibilität und effiziente Patch-Management-Programme entwickeln. Ein kontinuierliches, priorisiertes Schwachstellenmanagement ist ein Muss.

Mit Greenbone gegen Black Basta

Durchgesickerte interne Chat-Protokolle der Ransomware-Gruppe Black Basta lassen in die Taktik und die inneren Abläufe der Gruppe blicken. Die Protokolle wurden von einer Person unter dem Pseudonym „ExploitWhispers“ veröffentlicht, die behauptet, die Veröffentlichung sei eine Reaktion auf die umstrittenen Angriffe von Black Basta auf russische Banken, die angeblich zu internen Konflikten innerhalb der Gruppe führten. Seit seinem Auftauchen im April 2022 hat Black Basta Berichten zufolge über 100 Millionen US-Dollar an Lösegeldzahlungen von mehr als 300 Opfern weltweit erhalten. 62 CVEs, auf die in den geleakten Dokumenten verwiesen wird, offenbaren die Taktik der Gruppe zur Ausnutzung bekannter Schwachstellen. Von diesen 62 CVEs unterhält Greenbone Erkennungstests für 61, was 98 % der CVEs abdeckt.

Greynoise-Report über massenhafte Ausnutzung von Schwachstellen

Mass-Exploitation-Angriffe sind vollautomatische Angriffe auf Dienste im Netzwerk, die via Internet zugänglich sind. Diesen Monat hat Greynoise einen umfassenden Bericht veröffentlicht, der die Mass-Exploitation-Landschaft zusammenfasst, einschließlich der 20 wichtigsten CVEs, die von den größten Botnets angegriffen werden (eindeutige IPs) und der Anbieter der am häufigsten angegriffenen Produkte. Hinzu kommen die wichtigsten der in den KEV-Katalog (Known Exploited Vulnerabilities) der CISA (Cybersecurity and Infrastructure Security Agency) aufgenommenen CVEs, die von Botnets ausgenutzt werden. Der Greenbone Enterprise Feed bietet Erkennungstests für 86 % aller CVEs (86 insgesamt), auf die im Bericht verwiesen wird. Wenn nur CVEs berücksichtigt werden, die im Jahr 2020 oder später veröffentlicht wurden (insgesamt 66), deckt unser Enterprise Feed 90 % davon ab.

Weitere Ergebnisse sind:

  • 60 % der CVEs, die bei Massenangriffen ausgenutzt wurden, wurden 2020 oder später veröffentlicht.
  • Angreifer nutzen Schwachstellen innerhalb von Stunden nach ihrer Veröffentlichung aus.
  • 28 % der Schwachstellen in CISA KEV werden von Ransomware-Gruppen ausgenutzt.

Zimbra Collaboration Suite

CVE-2023-34192 (CVSS 9.0) ist eine hoch gefährliche Cross-Site-Scripting (XSS)-Schwachstelle in der Zimbra Collaboration Suite (ZCS) Version 8.8.15. Sie erlaubt authentifizierten Angreifern die Ausführung von beliebigem Code über manipulierte Skripte, die auf die Funktion „/h/autoSaveDraft“ abzielen. Die CISA hat CVE-2023-34192 in ihren KEV-Katalog aufgenommen, was darauf hindeutet, dass die Schwachstelle aktiv in realen Angriffen ausgenutzt wurde. Der PoC-Exploit-Code (Proof of Concept) ist öffentlich verfügbar, sodass auch weniger erfahrene Angreifer hier mitmischen können. CVE-2023-34192 hat seit ihrer Aufdeckung im Jahr 2023 einen sehr hohen EPSS-Score. Für Verteidiger, die EPSS (Exploit Prediction Scoring System) für die Priorisierung von Abhilfemaßnahmen nutzen, bedeutet dies, mit hoher Priorität zu patchen.

Die Zimbra Collaboration Suite (ZCS) ist eine Open-Source-Plattform für Office-Anwendungen, die E-Mail, Kalender, Kontakte, Aufgaben und Tools für die Zusammenarbeit integriert, aber einen Nischenmarktanteil von weniger als 1 % aller E-Mail- und Messaging-Plattformen hält.

„Living on the Edge“: kritische Schwachstellen in Netzwerkgeräten

In unserem monatlichen Threat Report haben wir die anhaltende Bedrohung von Edge-Netzwerkgeräten nachvollzogen. Anfang dieses Monats berichteten wir über das maximale Desaster, das die Auslaufmodelle der Zyxel-Router und -Firewalls heraufbeschwören. In diesem Abschnitt befassen wir uns mit neuen Sicherheitsrisiken, die in die Kategorie „Edge Networking“ fallen. Greenbone verfügt über Erkennungsfunktionen für alle im Folgenden beschriebenen CVEs.

Chinesische Hacker nutzen PAN-OS von Palo Alto für Ransomware

CVE-2024-0012 (CVSS 9.8), eine Sicherheitslücke in Palo Alto PAN-OS, die im November letzten Jahres bekannt wurde, gilt als eine der am häufigsten ausgenutzten Sicherheitslücken des Jahres 2024. Die CVE wird Berichten zufolge auch von staatlich unterstützten chinesischen Bedrohungsakteuren für Ransomware-Angriffe genutzt. Eine weitere neue Schwachstelle, die PAN-OS betrifft, CVE-2025-0108 (CVSS 9.1), wurde erst diesen Monat bekannt gegeben und von der CISA sofort als aktiv ausgenutzt eingestuft. Mit CVE-2025-0108 lässt sich die Authentifizierung in der Webmanagement-Schnittstelle umgehen. Sie kann mit gekoppelt werden mit CVE-2024-9474 (CVSS 7.2), einer separaten Schwachstelle für die Ausweitung von Privilegien, um unauthentifizierte Kontrolle über Root-Dateien in einem ungepatchten PAN-OS-Gerät zu erlangen.

SonicWall flickt kritische, aktiv ausgenutzte Schwachstelle in SonicOS

CVE-2024-53704, eine kritische Sicherheitslücke in SonicWall-Geräten, wurde kürzlich in die KEV-Liste der CISA aufgenommen. Erstaunlicherweise listet die CISA acht CVEs bei SonicWall auf, von denen bekannt ist, dass sie aktiv in Ransomware-Angriffen ausgenutzt werden. Die neue Bedrohung, CVE-2024-53704 (CVSS 9.8) ist eine Schwachstelle, die durch einen unsauberen Authentifizierungsmechanismus [CWE-287] im SSLVPN der SonicOS-Versionen 7.1.1-7058 und älter, 7.1.2-7019 und 8.0.0-8035 von SonicWall entsteht. Sie ermöglicht es Angreifern, die Authentifizierung zu umgehen und aktive SSL-VPN-Sitzungen zu kapern, wodurch sie möglicherweise unbefugten Zugriff auf das Netzwerk erhalten. Eine vollständige technische Analyse ist bei BishopFox verfügbar. In einem Security Advisory von SonicWall werden außerdem weitere CVEs mit hohem Schweregrad in SonicOS genannt, die zusammen mit CVE-2024-53704 gepatcht wurden.

CyberoamOS und EOL XG Firewalls von Sophos aktiv ausgenutzt

Der Security-Anbieter Sophos, der Cyberoam im Jahr 2014 übernommen hat, hat eine Warnung und einen Patch für CVE-2020-29574 herausgegeben. CyberoamOS ist Teil des Produkt-Ökosystems von Sophos. Abgesehen von diesem CVE ist auch die Sophos XG Firewall, die bald auslaufen wird, Gegenstand einer Warnung über eine mögliche aktive Ausnutzung.

  • CVE-2020-29574 (CVSS 9.8): Eine kritische SQL-Injection-Schwachstelle [CWE-89] wurde in der WebAdmin-Schnittstelle von CyberoamOS-Versionen bis zum 4. Dezember 2020 entdeckt. Dieser Fehler ermöglicht es nicht authentifizierten Angreifern, beliebige SQL-Anweisungen aus der Ferne auszuführen und möglicherweise vollständigen administrativen Zugriff auf das Gerät zu erlangen. Es wurde ein Hotfix-Patch veröffentlicht, der auch für einige betroffene End-of-Life (EOL) Produkte gilt.
  • CVE-2020-15069 (CVSS 9.8) ist eine kritische Buffer-Overflow-Schwachstelle in den Sophos XG Firewall-Versionen 17.x bis v17.5 MR12, die nicht authentifizierte Remote Code Execution (RCE) über die HTTP/S-Lesezeichen-Funktion für den clientlosen Zugriff ermöglicht. Diese 2020 veröffentlichte Sicherheitslücke wird nun aktiv ausgenutzt und wurde in die CISA KEV aufgenommen, was auf ein erhöhtes Risiko hinweist. Sophos veröffentlichte 2020, als die Sicherheitslücke bekannt wurde, einen Hinweis zusammen mit einem Hotfix für betroffene Firewalls. Die Hardware-Appliances der XG-Serie werden voraussichtlich bald, am 31. März 2025, das Ende ihrer Lebensdauer (EOL) erreichen.

PrivEsc- und Auth-Umgehungen in Fortinet FortiOS und FortiProxy

Fortinet hat zwei kritische Sicherheitslücken bekannt gegeben, die beide FortiOS und FortiProxy betreffen. Das Canadian Center for Cybersecurity und das Belgian Center for Cybersecurity haben Hinweise veröffentlicht. Fortinet räumt ein, dass CVE-2024-55591 aktiv ausgenutzt wird, und hat eine offizielle Anleitung veröffentlicht, die Details zu den betroffenen Versionen und empfohlenen Updates enthält.

  • CVE-2024-55591 (CVSS 9.8): Ein Authentication Bypass unter Verwendung eines alternativen Pfads oder Kanals [CWE-288], die FortiOS betrifft, ermöglicht es einem Angreifer, remote über manipulierte Anfragen an das Node.js-Websocket-Modul Super-Admin-Rechte zu erlangen. Es stehen mehrere PoC-Exploits zur Verfügung [1][2], die das Risiko einer Ausnutzung durch weniger erfahrene Angreifer erhöhen.
  • CVE-2024-40591 (CVSS 8.8): Ermöglicht es einem authentifizierten Administrator mit Security Fabric-Berechtigungen, seine Privilegien zum Super-Administrator zu erweitern, indem er das betroffene FortiGate-Gerät mit einem kompromittierten Upstream-FortiGate unter seiner Kontrolle verbindet.

Cisco-Schwachstellen als erste Zugangsvektoren bei Telekom-Hacks

In den letzten Monaten hat die chinesische Spionagegruppe Salt Typhoon routinemäßig mindestens zwei kritische Schwachstellen in Cisco IOS XE-Geräten ausgenutzt, um sich dauerhaft Zugang zu Telekommunikationsnetzen zu verschaffen. Zu den Opfern gehören italienische ISPs, eine südafrikanische und eine große thailändische Telekommunikationsgesellschaft sowie zwölf Universitäten weltweit, darunter die UCLA, die indonesische Universitas Negeri Malang und die mexikanische UNAM. Zuvor hatte Salt Typhoon mindestens neun US-amerikanische Telekommunikationsunternehmen angegriffen, darunter Verizon, AT&T und Lumen Technologies. Die US-Behörden behaupten, Salt Typhoons Ziel sei die Überwachung von hochrangigen Personen, politischen Persönlichkeiten und Beamten, die mit chinesischen politischen Interessen in Verbindung stehen.

Zu den CVEs, die von Salt Typhoon ausgenutzt werden, gehören:

  • CVE-2023-20198 (CVSS 10): Eine Schwachstelle zur Privilegien-Erweiterung in der Web-Schnittstelle von Cisco IOS XE. Sie wird für den anfänglichen Zugriff verwendet und ermöglicht es Angreifern, ein Admin-Konto zu erstellen.
  • CVE-2023-20273 (CVSS 7.2): Eine weitere Schwachstelle, die zur Erweiterung von Privilegien führt. Nach Erlangung des Admin-Zugriffs wird sie dazu genutzt, den privilegierten Zugriff auf Root-Dateien zu erweitern und einen GRE-Tunnel (Generic Routing Encapsulation) für den dauerhaften Verbleib im Netzwerk einzurichten.

Außerdem wurden im Februar 2025 zwei weitere CVEs in Cisco-Produkten bekannt:

  • CVE-2023-20118 (CVSS 7.2): Eine Command-Injection-Schwachstelle in der webbasierten Management-Oberfläche von Cisco Small Business Routern erlaubt es authentifizierten, entfernten Angreifern, beliebige Befehle mit Root-Rechten auszuführen, indem sie manipulierte HTTP-Anfragen senden. Die CISA hat CVE-2023-20118 in ihren KEV-Katalog aufgenommen, was darauf hindeutet, dass die Schwachstelle aktiv ausgenutzt wird.
  • CVE-2023-20026 (CVSS 7.2): Eine Command-Injection-Schwachstelle in der webbasierten Management-Oberfläche der Cisco Small Business Router der RV042-Serie erlaubt authentifizierten, entfernten Angreifern mit gültigen administrativen Anmeldeinformationen, beliebige Befehle auf dem Gerät auszuführen. Die Schwachstelle ist auf eine unsachgemäße Validierung von Benutzereingaben in eingehenden HTTP-Paketen zurückzuführen. Es ist zwar nicht bekannt, dass CVE-2023-20026 in aktiven Kampagnen ausgenutzt wird, aber dem Product Security Incident Response Team (PSIRT) von Cisco ist bekannt, dass PoC-Exploit-Code für diese Sicherheitslücke existiert.

Ivanti patcht vier kritische Schwachstellen

Es wurden vier kritische Schwachstellen identifiziert, die Ivanti Connect Secure (ICS), Policy Secure (IPS) und Cloud Services Application (CSA) betreffen. Bisher sind keine Berichte über aktive Angriffe in freier Wildbahn oder PoC-Exploits aufgetaucht. Ivanti rät Anwendern, umgehend auf die neuesten Versionen zu aktualisieren, um diese kritischen Sicherheitslücken zu schließen.

Hier ist eine kurze technische Zusammenfassung:

  • CVE-2025-22467 (CVSS 8.8): Angreifer mit Anmeldeinformationen können aufgrund eines Stack-basierten Buffer Overflow in ICS-Versionen vor 22.7R2.6 Remote Code Execution (RCE) erreichen [CWE-121].
  • CVE-2024-38657 (CVSS 9.1): Angreifer mit Anmeldeinformationen können beliebige Dateien schreiben aufgrund einer externen Kontrolle des Dateinamens in ICS-Versionen vor 22.7R2.4 und IPS-Versionen vor 22.7R1.3.
  • CVE-2024-10644 (CVSS 9.1): Ein Code-Injection-Fehler in ICS (vor 22.7R2.4) und IPS (vor 22.7R1.3) ermöglicht beliebige RCE für authentifizierte Administratoren.
  • CVE-2024-47908 (CVSS 7.2): Eine Schwachstelle in der Command Injection des Betriebssystems [CWE-78] in der Admin-Webkonsole von CSA (Versionen vor 5.0.5) erlaubt beliebige RCE für authentifizierte Administratoren.

Zusammenfassung

Der Threat Report dieses Monats beleuchtet wichtige Entwicklungen im Bereich der Cybersicherheit, darunter die sich weiterentwickelnden Taktiken von Ransomware-Gruppen wie Black Basta und die allgegenwärtige kritische Bedrohung für Edge-Netzwerkgeräte. Unterstützt durch KI-Tools nutzen Angreifer Schwachstellen immer schneller aus – manchmal schon wenige Stunden nach ihrer Entdeckung. Unternehmen müssen wachsam bleiben, indem sie proaktive Sicherheitsmaßnahmen ergreifen, ihre Abwehr kontinuierlich aktualisieren und Bedrohungsdaten nutzen, um neuen Gefahren einen Schritt voraus zu sein.

Wir freuen uns, die Veröffentlichung mehrerer Funktions-Updates für unser Greenbone Operating System (GOS), den Software-Stack hinter unseren physischen und virtuellen Enterprise Appliances, bekannt zu geben. Die Updates führen neue Front-End-Funktionen ein, die das Schwachstellenmanagement im Unternehmen verbessern, sowie leistungssteigernde Back-End-Funktionen. Die neuesten Updates des Greenbone Operating System (GOS), Version 24.10, spiegeln das Engagement von Greenbone wider, Best Practices für eine grundlegende Cybersicherheit zu fördern und Unternehmen in die Lage zu versetzen, Sicherheitslücken schneller als je zuvor zu priorisieren und zu schließen.

In diesem Beitrag stellen wir Ihnen die neuesten Funktionen und Verbesserungen vor, die unsere Enterprise Appliances zu noch leistungsfähigeren Tools für das Exposure Management und die Einhaltung von Cybersicherheitsvorschriften machen.

GOS 24.10 bringt alle neuen Funktionen

Der Greenbone Security Assistant (GSA) ist das Tor des IT-Administrators zur Transparenz von IT-Security. Das Web-Interface des GSA präsentiert sich in einem völlig neuen Gewand. Die aktualisierte Version zeichnet sich durch ein modernes, minimalistisches Erscheinungsbild aus, das den Schwerpunkt auf Nützlichkeit und Benutzerfreundlichkeit legt und gleichzeitig alle Möglichkeiten von Greenbone in Reichweite bereitstellt. Aber das neue Aussehen ist nur die Oberfläche. Schauen wir uns einige tiefgreifendere Änderungen an.

Die neue Ansicht des Compliance Audit Reports

Die Einhaltung von Vorschriften zur Cybersicherheit wird immer wichtiger. Neue Regulierungen in der EU wie der Digital Operational Resilience Act (DORA), die Network and Information Security Directive 2 (NIS2) und der Cyber Resilience Act (CRA) verlangen von Unternehmen mehr proaktive Maßnahmen zum Schutz ihren digitalen Infrastrukturen. Andere Faktoren wie Cybersecurity-Versicherungen, die Notwendigkeit einer stärkeren Überwachung durch Dritte und die Rechenschaftspflicht gegenüber den Kunden wirken sich auf die Art und Weise aus, wie Unternehmen ihre Cybersecurity-Aktivitäten beaufsichtigen.

Das GOS 24.10-Update enthält eine brandneue, auf die Einhaltung von Vorschriften ausgerichtete Compliance-Ansicht. Die aktualisierte Benutzeroberfläche ermöglicht einen besseren Einblick in Cybersecurity-Risiken und unterstützt die Ausrichtung an IT-Governance-Zielen. Sie enthält Reports für Compliance-Audits, neue Dashboard-Anzeigen und Filteroptionen. Dadurch lassen sich die auf Compliance ausgerichteten Daten von den regulären Scan-Berichten unterscheiden. In den Delta-Audit-Berichten werden die Fortschritte bei der Einhaltung der Vorschriften durch visuelle Indikatoren und Tooltips hervorgehoben, die eine einfache Identifizierung ermöglichen.

EPSS-Unterstützung mit KI-gestützter Priorisierung

Da die Zahl der neuen CVEs (Common Vulnerabilities and Exposures) weiter zunimmt, ist es wichtig, Schwachstellen zu priorisieren, um sich auf die Bedrohungen mit den größten Auswirkungen konzentrieren zu können. Das Exploit Prediction Scoring System (EPSS) ist eine KI-gestützte Metrik, die die Wahrscheinlichkeit schätzt, dass ein CVE in freier Wildbahn ausgenutzt wird. EPSS wendet maschinelles Lernen (ML) auf historische Daten an, um vorherzusagen, bei welchen neuen CVEs das Risiko eines aktiven Angriffs am höchsten ist.

EPSS-Daten sind jetzt in unsere Enterprise Appliances integriert. Regelmäßig aktualisierte Wahrscheinlichkeiten zur Ausnutzung für alle aktiven CVEs sind in der Greenbone-Plattform nicht verfügbar. Administratoren können zusätzlich zum traditionellen Schweregrad im CVSS (Common Vulnerability Scoring System) aktuelle Werte für die Wahrscheinlichkeit und die Perzentile von Exploits nutzen und sich so auf die kritischsten Schwachstellen in ihrem Betrieb konzentrieren.

Mehr Möglichkeiten für anpassbare CSV- und JSON-Berichte

Greenbone war schon immer auf Einfachheit und Flexibilität ausgerichtet. So erfüllen die Lösungen ein breites Spektrum an besonderen betrieblichen Anforderungen. GOS 24.10 führt den Export von Berichten im JSON-Format ein. Außerdem können die Benutzer jetzt die Felder in exportierten CSV- und JSON-Berichten anpassen. So können sie Reports direkt von Greenbone aus anpassen, um den Berichtsanforderungen genauer zu entsprechen und sich auf das zu konzentrieren, was für die Analyse, die Einhaltung von Vorschriften oder die Entscheidungsfindung wesentlich ist.

Zusätzliche Backend-Optimierungen

Um die Flexibilität und Genauigkeit des Schwachstellenabgleichs zu verbessern, hat Greenbone mehrere Backend-Optimierungen eingeführt, die sich auf die Handhabung von CPE (Common Platform Enumeration) und das Feed-Management konzentrieren. Hier ein Blick auf die Neuerungen:

  • Das Backend kann CPEv2.3-Strings in CPEv2.2-URIs konvertieren und beide Versionen für einen zuverlässigeren Abgleich der betroffenen Produkte speichern. Zukünftige Entwicklungen werden möglicherweise einen fortgeschrittenen Abgleich im laufenden Betrieb umfassen, der die Bewertung von Schwachstellen noch präziser macht.
  • Greenbone Enterprise Appliances unterstützen jetzt JSON-basierte CVE-, CPE-, EPSS- und CERT-Feeds sowie gzip-Datenkompression.

Zusammenfassung

Mit der Veröffentlichung einer neuen Runde von Updates stärkt Greenbone die Flaggschiff-Produkte der Greenbone Enterprise Appliances. Die Updates führen ein modernisiertes GSA-Web-Interface ein, eine auf die Einhaltung von Vorschriften ausgerichtete Audit-Berichtsansicht für mehr Transparenz und verbesserte CSV- und JSON-Exportfunktionen, die den Anwendern die Kontrolle über die Berichtsdaten geben. Außerdem wurden die verfügbaren Optionen für die Priorisierung von Schwachstellenrisiken um KI-basiertes EPSS erweitert. Schließlich gewährleisten Backend-Optimierungen die nahtlose Kompatibilität mit neuen CPE-Formaten und JSON-basierten Feeds. Zusammengenommen ergänzen diese Funktionen die anpassungsfähigen Schwachstellenmanagement-Funktionen von Greenbone und ermöglichen es Unternehmen, aufkommenden Bedrohungen mit branchenführender Schwachstellenerkennung und -priorisierung einen Schritt voraus zu sein.

Im Jahr 2024 verlangte die geopolitische Instabilität, gekennzeichnet durch die Konflikte in der Ukraine und im Nahen Osten, nach einer stärkeren Cybersicherheit sowohl im öffentlichen als auch im privaten Sektor. China nahm die US-Verteidigung, Versorgungsunternehmen, Internetprovider und das Transportwesen ins Visier, während Russland koordinierte Cyberangriffe auf US-amerikanische und europäische Staaten startete, um die öffentliche Meinung zu beeinflussen und Uneinigkeit unter den westlichen Verbündeten über den Ukraine-Krieg zu schaffen. Am Ende von 2024 blicken wir auf eine hektische Cybersicherheitslandschaft am Rande des Abgrunds zurück.

2024 war ein weiteres Rekordjahr für CVE-Veröffentlichungen (Common Vulnerabilities and Exposures). Auch wenn es sich bei vielen Meldungen um sogenannte „AI Slop“-Meldungen [1][2] handelt, gleicht die schiere Menge der veröffentlichten Schwachstellen einen großen Heuhaufen. Da IT-Sicherheitsteams versuchen, die hoch riskanten „Nadeln“ in einem noch größeren „Heuhaufen“ zu finden, steigt die Wahrscheinlichkeit, dass sie übersehen werden. 2024 war auch ein Rekordjahr für Ransomware-Auszahlungen in Bezug auf Volumen und Umfang sowie für Denial-of-Service-Angriffe (DoS).

Zusätzlich fiel auch die „National Vulnerability Database“ des NIST (National Institute of Standards and Technology) aus, von der weltweit viele Organisationen betroffen waren, darunter auch Security-Anbieter. Der CVE-Scanner von Greenbone basiert auf dem CPE-Abgleich (Common Platform Enumeration) und ist von dem Ausfall des NIST NVD betroffen. Der primäre Scan-Motor von Greenbone, OpenVAS Scanner, ist jedoch nicht betroffen. OpenVAS interagiert direkt mit Diensten und Anwendungen, sodass unsere Entwickler anhand der Details aus den ersten CVE-Berichten zuverlässige Schwachstellentests erstellen können.

Im Jahr 2025 wird das Glück den Unternehmen hold sein, die vorbereitet sind. Angreifer nutzen Cyber-Intelligenz vermehrt als Waffe; die durchschnittliche Time-to-Exploit (TTE) beträgt nur noch Tage oder sogar Stunden. Der Aufstieg der KI wird neue Herausforderungen für die Cybersicherheit mit sich bringen. Neben diesen Fortschritten bleiben traditionelle Bedrohungen wie für die Cloud-Sicherheit oder für Software-Lieferketten von entscheidender Bedeutung. Sicherheitsanalysten sagen voraus, dass grundlegende Netzwerkgeräte wie VPN-Gateways, Firewalls und andere Edge-Geräte auch im Jahr 2025 ein begehrtes Ziel sein werden.

In dieser Ausgabe unseres monatlichen Threat Reports befassen wir uns mit den bedrohlichsten Schwachstellen und aktiven Kampagnen zu deren Ausnutzung, die im Dezember 2024 aufgetaucht sind.

Mitel MiCollab: ein blitzartig ausgenutzter Zero-Day

Sobald Schwachstellen veröffentlicht werden, stürzen sich Angreifer mit zunehmender Geschwindigkeit auf sie. Für einige Schwachstellen gibt es innerhalb von Stunden öffentlichen Proof-of-Concept-Exploit-Code (PoC), sodass den Verteidigern nur eine minimale Reaktionszeit bleibt. Anfang Dezember beobachteten die Forscher von GreyNoise die Ausnutzung von Mitel MiCollab am selben Tag, an dem der PoC-Code veröffentlicht wurde. Mitel MiCollab vereint Sprache, Video, Messaging, Präsenz und Konferenzen auf einer Plattform. Die neuen Schwachstellen haben neben der amerikanischen CISA (Cybersecurity and Infrastructure Security Agency) auch beim belgischen National Center for Cybersecurity, dem Australian Signals Directorate (ASD) und dem britischen National Health Service (NHS) Warnungen hervorgerufen. Die Behebung der jüngsten Sicherheitslücken in MiCollab wird als dringend angesehen.

Hier einige Details zu den neuen aktiv ausgenutzten CVEs in Mitel MiCollab:

  • CVE-2024-41713 (CVSS 7.8 Hoch): Die „Path Traversal“-Schwachstelle in der NPM-Komponente (NuPoint Unified Messaging) von Mitel MiCollab ermöglicht den unauthentifizierten Zugriff auf Dateien durch Ausnutzung der „…/“-Technik in HTTP-Anfragen. Dies kann hochsensible Dateien offenlegen.
  • CVE-2024-35286 (CVSS 10 Kritisch): Eine SQL-Injection-Schwachstelle in der NPM-Komponente von Mitel MiCollab, die es einem böswilligen Akteur ermöglicht, einen SQL-Injection-Angriff auszuführen.

Seit Mitte 2022 hat die CISA drei weitere CVEs in Mitel-Produkten aufgespürt, von denen bekannt ist, dass sie für Ransomware-Angriffe genutzt werden. Greenbone kann Endpunkte erkennen, die für diese hochgradig gefährlichen CVEs anfällig sind, und zwar mit aktiven Prüfungen [4][5].

SSL-VPNs von Array Networks von Ransomware ausgenutzt

CVE-2023-28461 (CVSS 9.8 Kritisch) ist eine Schwachstelle für Remote Code Execution (RCE) in den Array AG Series und vxAG SSL VPN Appliances von Array Networks. Die Geräte, vom Hersteller angepriesen als Präventivmaßnahme gegen Ransomware, werden nun aktiv in jüngsten Ransomware-Angriffen ausgenutzt. Array Networks selbst wurde Anfang dieses Jahres von der Dark Angels Ransomware-Bande angegriffen [1][2].

Jüngsten Berichten zufolge hält Array Networks einen beträchtlichen Marktanteil im Bereich Application Delivery Controller (ADC). Laut dem WW Quarterly Ethernet Switch Tracker von IDC ist das Unternehmen mit einem Marktanteil von 34,2 % Marktführer in Indien. Array Networks hat Patches für betroffene Produkte mit ArrayOS AG 9.4.0.481 und früheren Versionen veröffentlicht. Der Greenbone Enterprise Feed enthält einen Erkennungstest für CVE-2023-28461, seit dieser Ende März 2023 bekanntgegeben wurde.

CVE-2024-11667 in Zyxel Firewalls

CVE-2024-11667 (CVSS 9.8 Kritisch) in den Firewall-Appliances von Zyxel wird aktiv in aktuellen Ransomware-Angriffen ausgenutzt. Eine „Directory Traversal“-Schwachstelle in der Web-Management-Schnittstelle könnte es einem Angreifer ermöglichen, Dateien über eine böswillig gestaltete URL herunter- oder hochzuladen. Zyxel Communications ist ein taiwanesisches Unternehmen, das sich auf die Entwicklung und Herstellung von Netzwerkgeräten für Unternehmen, Dienstanbieter und Verbraucher spezialisiert hat. Berichten zufolge liegt der Marktanteil von Zyxel bei etwa 4,2 % in der ITK-Branche mit einer vielfältigen globalen Präsenz, zu der auch große Fortune-500-Unternehmen gehören.

In Fällen wie diesem ist ein „Defense in Depth“-Ansatz für die Cybersicherheit besonders wichtig. Wenn Angreifer ein Netzwerkgerät wie eine Firewall kompromittieren, erhalten sie in der Regel nicht sofort Zugriff auf hochsensible Daten. Der anfängliche Zugriff ermöglicht es den Angreifern jedoch, den Netzwerkverkehr zu überwachen und das Netzwerk des Opfers auf der Suche nach wertvollen Zielen zu durchforsten.

Zyxel empfiehlt, Ihr Gerät auf die neueste Firmware zu aktualisieren, den Fernzugriff vorübergehend zu deaktivieren, wenn Updates nicht sofort angewendet werden können, und die bewährten Verfahren zur Sicherung verteilter Netzwerke anzuwenden. CVE-2024-11667 betrifft die Firmware-Versionen V5.00 bis V5.38 der Zyxel ATP-Serie, die Firmware-Versionen V5.00 bis V5.38 der USG FLEX-Serie, die Firmware-Versionen V5.10 bis V5.38 der USG FLEX 50(W)-Serie und die Firmware-Versionen V5.10 bis V5.38 der USG20(W)-VPN-Serie. Greenbone kann die Sicherheitslücke CVE-2024-11667 bei allen betroffenen Produkten erkennen.

Kritische Schwachstellen in Apache Struts 2

CVE-2024-53677 (CVSS 9.8 Kritisch), ein unbeschränkter Dateiupload [CWE-434], der Apache Struts 2 betrifft, ermöglicht es Angreifern, ausführbare Dateien in Web-Root-Verzeichnisse hochzuladen. Wenn eine Web-Shell hochgeladen wird, kann die Schwachstelle zu unautorisierter Remote Code Execution führen. Apache Struts ist ein Java-basiertes Open-Source-Framework für Webanwendungen, das sowohl im öffentlichen als auch im privaten Sektor, einschließlich Behörden, Finanzinstituten und anderen großen Organisationen, weit verbreitet ist [1]. PoC-Exploit-Code (Proof-of-Concept) ist öffentlich verfügbar, und CVE-2024-53677 wird aktiv ausgenutzt, was das Risiko erhöht.

Die Sicherheitslücke wurde ursprünglich unter der Bezeichnung CVE-2023-50164 geführt und im Dezember 2023 veröffentlicht [2][3]. Ähnlich wie bei einer kürzlich aufgetretenen Schwachstelle in VMware vCenter war der ursprüngliche Patch jedoch unwirksam, was zum erneuten Auftreten der Schwachstelle führte. CVE-2024-53677 betrifft die Komponente FileUploadInterceptor, sodass Anwendungen, die dieses Modul nicht verwenden, nicht betroffen sind. Benutzer sollten ihre Struts2-Instanz auf Version 6.4.0 oder höher aktualisieren und auf den neuen Datei-Upload-Mechanismus umstellen. Weitere neue kritische CVEs in beliebter Open-Source-Software (OSS) von Apache:

Die Apache Software Foundation (ASF) folgt bei ihren Projekten einem strukturierten Prozess, der die private Berichterstattung und die Veröffentlichung von Patches vor der öffentlichen Bekanntgabe fördert, so dass Patches für alle oben genannten CVEs verfügbar sind. Greenbone kann Systeme erkennen, die für CVE-2024-53677 anfällig sind, ebenso wie andere kürzlich bekannt gewordene Schwachstellen in Produkten der ASF Foundation.

Palo Altos Secure DNS wird aktiv für DoS ausgenutzt

CVE-2024-3393 (CVSS 8.7 Hoch) ist eine DoS-Schwachstelle (Denial of Service) in der DNS-Sicherheitsfunktion von PAN-OS. Die Schwachstelle ermöglicht es einem nicht authentifizierten Angreifer, Firewalls der PA-Serie, VM-Serie, CN-Serie und Prisma Access-Geräte über bösartige Pakete, die auf Datenebene gesendet werden, neu zu starten. Durch wiederholtes Auslösen dieses Zustands können Angreifer die Firewall dazu bringen, in den Wartungsmodus zu wechseln. Die CISA hat die Schwachstelle CVE-2024-3393 als aktiv ausgenutzt identifiziert. Sie ist eine von fünf weiteren aktiv ausgenutzten Schwachstellen in Palo-Alto-Produkten, die allein in den letzten zwei Monaten aufgetreten sind.

Laut den von Palo Alto veröffentlichten Empfehlungen sind nur Geräte mit einer DNS Security License oder Advanced DNS Security License und aktivierter Protokollierung betroffen. Es wäre eine einfache Annahme zu sagen, dass diese Bedingungen bedeuten, dass Top-Tier-Unternehmenskunden betroffen sind. Greenbone kann mit einem Versionserkennungstest Geräte identifizieren, die von CVE-2024-3393 betroffen sind.

Microsoft-Sicherheit im Jahr 2024: Wer hat die Fenster offengelassen?

Auch wenn es unfair wäre, Microsoft für die Bereitstellung anfälliger Software im Jahr 2024 verantwortlich zu machen, hat das Redmonder BigTech die Sicherheitserwartungen sicherlich nicht übertroffen. 2024 wurden insgesamt 1.119 CVEs in Microsoft-Produkten offengelegt; 53 erreichten einen kritischen Schweregrad (CVSS > 9.0), 43 wurden in den KEV-Katalog (Known Exploited Vulnerabilities) der CISA aufgenommen, und mindestens vier waren bekannte Vektoren für Ransomware-Angriffe. Obwohl der Vergleich grob ist, gab es im Linux-Kernel mehr (3.148) neue CVEs, aber nur drei wurden als kritisch eingestuft und nur drei wurden in den KEV-Katalog der CISA aufgenommen. Hier sind die Details zu den neuen aktiv ausgenutzten CVEs in Microsoft Windows:

  • CVE-2024-35250 (CVSS 7.8 Hoch): Eine Schwachstelle zur Ausweitung von Privilegien, die es einem Angreifer mit lokalem Zugriff auf ein System ermöglicht, Privilegien auf Systemebene zu erlangen. Die Schwachstelle wurde im April 2024 entdeckt, und im Oktober wurde PoC-Exploit-Code online gestellt.
  • CVE-2024-49138 (CVSS 7.8 Hoch): Eine Heap-basierte „Buffer Overflow“-Schwachstelle [CWE-122] zur Erweiterung von Privilegien; dieses Mal im Treiber des Microsoft Windows Common Log File System (CLFS). Obwohl es keinen öffentlich zugänglichen Exploit gibt, haben Security-Forschende Hinweise darauf, dass diese Sicherheitslücke ausgenutzt werden kann, indem ein bösartiges CLFS-Protokoll erstellt wird, um privilegierte Befehle auf der Ebene der Systemberechtigungen auszuführen.

Die Erkennung und Entschärfung dieser neuen Windows CVEs ist von entscheidender Bedeutung, da sie aktiv angegriffen werden. Beide wurden in Microsofts Dezember-Patch-Release gepatcht. Greenbone kann CVE-2024-35250 und CVE-2024-49138 erkennen sowie alle anderen als CVEs veröffentlichten Sicherheitslücken von Microsoft.

Zusammenfassung

2024 unterstrich die anhaltende Herausforderung in der Cybersicherheit mit rekordverdächtigen Enthüllungen von Schwachstellen, Ransomware-Auszahlungen, DoS-Angriffen und einem alarmierenden Anstieg aktiver Ausnutzung von Schwachstellen. Die schnelle Verwandlung von Schwachstellen in Angriffswaffen unterstreicht die Notwendigkeit einer kontinuierlichen Strategie für das Schwachstellenmanagement und eines Defense-in-Depth-Ansatzes.

Im Dezember gab es neue kritische Schwachstellen in Mitel-, Apache- und Microsoft-Produkten. Weitere Netzwerkprodukte: VPNs von Array Networks und Firewalls von Zyxel werden jetzt von Ransomware-Akteuren ausgenutzt, was noch einmal bestätigt, dass proaktive Maßnahmen zur Erkennung und Patchen von Schwachstellen ergriffen werden müssen. Auf dem Weg ins Jahr 2025 wird Fortuna diejenigen begünstigen, die hierauf vorbereitet sind; Unternehmen müssen wachsam bleiben, um die Risiken in einer zunehmend feindlichen Cyberlandschaft im Zaum zu halten.

In der ersten Hälfte des Jahres 2024 war die Cybersicherheit für viele Unternehmen sehr prekär. Selbst in sehr wichtigen Bereichen führten kritische Schwachstellen zu einer permanenten Bedrohung durch Cyberangriffe. Die Verteidiger stehen damit im ständigen Kampf, die unaufhaltsam entstehenden Sicherheitslücken zu erkennen und zu beheben. Große Unternehmen sind Ziel ausgeklügelter „Großwild-Jagden“ von Ransomware-Banden, die den Ransomware-Jackpot knacken wollen. Die größte Auszahlung aller Zeiten wurde im August gemeldet – 75 Millionen Dollar an die Dark Angels-Bande. Kleine und mittlere Unternehmen sind ebenfalls täglich Ziel von automatisierten „Mass Exploitation“-Angriffen, die ebenfalls häufig auf die Verbreitung von Ransomware abzielen [1][2][3].

Ein kurzer Blick auf die „Top Routinely Exploited Vulnerabilities“ der CISA zeigt, dass Cyberkriminelle zwar neue Informationen zu CVE (Common Vulnerabilities and Exposures) innerhalb weniger Tage oder sogar Stunden in Exploit-Code umwandeln können, ältere Schwachstellen aus den vergangenen Jahren aber immer noch auf ihrem Radar haben.

Im Threat Tracking dieses Monats beleuchten wir einige der größten Risiken für die Cybersicherheit in Unternehmen. Dabei geht es um Schwachstellen, die kürzlich als aktiv ausgenutzt gemeldet wurden, und andere kritische Schwachstellen in IT-Produkten von Unternehmen.

BSI findet Fehler in LibreOffice

OpenSource Security hat im Auftrag des Bundesamts für Sicherheit in der Informationstechnik (BSI) eine Sicherheitslücke in LibreOffice entdeckt. Unter der Bezeichnung CVE-2024-6472 (CVSS 7.8 Hoch) wurde festgestellt, dass Benutzer in LibreOffice-Dokumenten eingebettete unsignierte Makros aktivieren und damit die Einstellung „Hochsicherheitsmodus“ außer Kraft setzen können. Während die Ausnutzung der Schwachstelle menschliche Interaktion erfordert, vermittelt sie ein falsches Gefühl von Sicherheit, da nicht signierte Makros nicht ausgeführt werden können, wenn der Hochsicherheitsmodus aktiviert ist.

KeyTrap: DoS-Angriff gegen DNSSEC

Im Februar 2024 enthüllten Wissenschaftler des deutschen Nationalen Forschungszentrums für Angewandte Cybersicherheit (ATHENE) in Darmstadt den „schlimmsten Angriff auf DNS, der jemals entdeckt wurde“. Den deutschen Forschern zufolge kann ein einziges Paket einen „Denial of Service“ (DoS) verursachen, indem es einen DNS-Resolver während der DNSSEC-Validierung überflutet. Unter dem Namen „KeyTrap“ können Angreifer die Schwachstelle ausnutzen, um Clients, die einen kompromittierten DNS-Server verwenden, am Zugriff auf das Internet oder lokale Netzwerkressourcen zu hindern. Schuld daran ist ein Designfehler in der aktuellen DNSSEC-Spezifikation [RFC-9364], der mehr als 20 Jahre zurückliegt [RFC-3833].

Die im Februar 2024 veröffentlichte und als CVE-2023-50387 (CVSS 7.5 Hoch) verfolgte Sicherheitslücke gilt als trivial und der Proof-of-Concept-Code ist auf GitHub verfügbar. Die Verfügbarkeit von Exploit-Code bedeutet, dass Kriminelle mit geringen Kenntnissen leicht Angriffe starten können. Greenbone kann Systeme mit anfälligen DNS-Anwendungen, die von CVE-2023-50387 betroffen sind, mit lokalen Sicherheitsüberprüfungen (LSC) für alle Betriebssysteme identifizieren.

CVE-2024-23897 in Jenkins hilft, um in indische Bank einzubrechen

CVE-2024-23897 (CVSS 9.8 Kritisch) in Jenkins (Versionen 2.441 und LTS 2.426.2 und früher) wird aktiv ausgenutzt und in Ransomware-Kampagnen verwendet, sogar gegen die National Payments Corporation of India (NPCI). Jenkins ist ein Open-Source Automation Server, der in erster Linie für die kontinuierliche Integration (CI) und die kontinuierliche Bereitstellung (CD) bei Software Development Operations (DevOps) verwendet wird.

Das Command Line Interface (CLI) in den betroffenen Versionen von Jenkins enthält eine Path Traversal-Schwachstelle [CWE-35], die durch eine Funktion verursacht wird, die das @-Zeichen gefolgt von einem Dateipfad durch den tatsächlichen Inhalt der Datei ersetzt. Dies ermöglicht es Angreifern, den Inhalt sensibler Dateien zu lesen, einschließlich solcher, die unbefugten Zugriff und anschließende Codeausführung ermöglichen. CVE-2024-23897 und ihre Verwendung in Ransomware-Angriffen folgen einer gemeinsamen Warnung der CISA und des FBI an Softwarehersteller, in ihren Produkten Schwachstellen in Bezug auf Pfad-Querungen zu beheben [CWE-35]. Greenbone enthält eine aktive Prüfung [1] und zwei Tests zur Versionserkennung [2][3], um verwundbare Versionen von Jenkins unter Windows und Linux zu identifizieren.

2 neue aktiv genutzte CVEs in Apache OFBiz

Apache OFBiz (Open For Business) ist eine beliebte Open-Source Software für ERP (Enterprise Resource Planning) und E-Commece, die von der Apache Software Foundation entwickelt wurde. Im August 2024 warnte die CISA die Cybersecurity Community vor einer aktiven Ausnutzung von Apache OFBiz über CVE-2024-38856 (CVSS 9.8 Kritisch), die Versionen vor 18.12.13 betrifft. CVE-2024-38856 ist eine Path-Traversal-Schwachstelle [CWE-35], die die „Override View“-Funktion von OFBiz betrifft und nicht authentifizierten Angreifern eine Remote Code Execution (RCE) auf dem betroffenen System ermöglicht.

CVE-2024-38856 umgeht eine zuvor gepatchte Schwachstelle, CVE-2024-36104, die erst im Juni 2024 veröffentlicht wurde, was darauf hindeutet, dass die erste Korrektur das Problem nicht vollständig behoben hat. Dies baut auch auf einer anderen Sicherheitslücke in OFBiz aus dem Jahr 2024 auf, CVE-2024-32113 (CVSS 9.8 Kritisch), die ebenfalls aktiv zur Verbreitung des Mirai-Botnetzes ausgenutzt wurde. Schließlich wurden Anfang September 2024 zwei neue CVEs mit kritischem Schweregrad, CVE-2024-45507 und CVE-2024-45195 (CVSS 9.8 Kritisch), zur Liste der Bedrohungen hinzugefügt, die aktuelle Versionen von OFBiz betreffen.

Da aktive Exploits und PoC-Exploits (Proof of Concept) für CVE-2024-38856 [1][2] und CVE-2024-32113 [1][2] zur Verfügung stehen, müssen die Betroffenen dringend einen Patch installieren. Greenbone ist in der Lage, alle vorgenannten CVEs in Apache OFBiz sowohl mit aktiven als auch mit Versionsprüfungen zu erkennen.

CVE-2022-0185 im Linux-Kernel wird aktiv ausgenutzt

CVE-2022-0185 (CVSS 8.4 Hoch), eine Heap-Overflow-Schwachstelle im Linux-Kernel, wurde im August 2024 in die CISA KEV aufgenommen. Öffentlich verfügbarer PoC-Exploit-Code und detaillierte technische Beschreibungen der Schwachstelle haben zur Zunahme von Cyberangriffen unter Ausnutzung von CVE-2022-0185 beigetragen.

Bei CVE-2022-0185 wird in der Linux-Funktion „legacy_parse_param()“ innerhalb der Filesystem-Kontext-Funktionalität die Länge der übergebenen Parameter nicht ordnungsgemäß überprüft. Durch diesen Fehler kann ein nicht privilegierter lokaler User seine Privilegien auf den Root-User ausdehnen.

Greenbone konnte CVE-2022-0185 seit Offenlegung Anfang 2022 über Schwachstellen-Testmodule erkennen, die eine Vielzahl von Linux-Distributionen abdecken, darunter Red Hat, Ubuntu, SuSE, Amazon Linux, Rocky Linux, Fedora, Oracle Linux und Enterprise-Produkte wie IBM Spectrum Protect Plus.

Neue VoIP- und PBX-Schwachstellen

Im August 2024 wurden eine Handvoll CVEs veröffentlicht, die sich auf Sprachkommunikationssysteme in Unternehmen auswirken. Die Schwachstellen wurden in den VoIP-Systemen von Cisco für kleine Unternehmen und in Asterisk, einem beliebten Open-Source-PBX-Zweigstellensystem, aufgedeckt. Schauen wir uns die Einzelheiten an:

Cisco Small Business IP-Telefone mit RCE und DoS

Es wurden drei schwerwiegende Schwachstellen bekannt, die die Web-Management-Konsole der IP-Telefone der Cisco Small Business SPA300 Series und SPA500 Series betreffen. Diese Schwachstellen unterstreichen nicht nur, wie wichtig es ist, Management-Konsolen nicht dem Internet auszusetzen, sondern stellen auch einen Angriffsvektor für Insider oder ruhende Angreifer dar, die sich bereits Zugang zum Netzwerk eines Unternehmens verschafft haben, um ihre Angriffe auf höherwertige Vermögenswerte zu richten und den Geschäftsbetrieb zu stören.

Greenbone erkennt alle neu bekannt gewordenen CVEs in Cisco Small Business IP Phone. Hier eine kurze technische Beschreibung der einzelnen CVEs:

  • CVE-2024-20454 und CVE-2024-20450 (CVSS 9.8 Kritisch): Ein nicht authentifizierter Angreifer könnte remote beliebige Befehle auf dem zugrundeliegenden Betriebssystem mit Root-Rechten ausführen, da eingehende HTTP-Pakete nicht richtig auf ihre Größe geprüft werden, was zu einem Buffer Overflow führen kann.
  • CVE-2024-20451 (CVSS 7.5 Hoch): Ein nicht authentifizierter Angreifer kann remote ein betroffenes Gerät dazu bringen, unerwartet neu zu laden, was zu einem Denial of Service führt, da HTTP-Pakete nicht ordnungsgemäß auf ihre Größe überprüft werden.

CVE-2024-42365 in Asterisk PBX Telephonie-Toolkit

Asterisk ist eine Open-Source-Nebenstellenanlage (Private Branch Exchange; PBX) und ein Telefonie-Toolkit. PBX ist ein System zur Verwaltung der in- und externen Anrufweiterleitung und kann traditionelle Telefonleitungen (analog oder digital) oder VoIP (IP PBX) verwenden. CVE-2024-42365, veröffentlicht im August 2024, betrifft die Versionen von Asterisk vor 18.24.2, 20.9.2 und 21.4.2 sowie die zertifizierten Asterisk-Versionen 18.9-cert11 und 20.7-cert2. Auch wurde ein Exploit-Modul für das Metasploit-Framework veröffentlicht, das das Risiko noch erhöht. Eine aktive Ausnutzung in freier Wildbahn wurde jedoch noch nicht beobachtet.

Greenbone kann CVE-2024-42365 über Netzwerk-Scans erkennen. Hier eine kurze technische Beschreibung der Sicherheitslücke:

  • CVE-2024-42365 (CVSS 8.8 Hoch): Ein AMI-Benutzer mit „write=originate“ kann alle Konfigurationsdateien im Verzeichnis „/etc/asterisk/“ ändern. Er kann entfernte Dateien verkleinern und auf Festplatte schreiben, aber auch an bestehende Dateien anhängen, indem er die FILE-Funktion innerhalb der SET-Anwendung verwendet. Dieses Problem kann zu einer Privilegien-Erweiterung, Remote Code Execution oder zur Fälschung serverseitiger Requests mit beliebigen Protokollen führen.

Browser: eine ständige Bedrohung

CVE-2024-7971 und CVE-2024-7965, zwei neue Schwachstellen im Chrome-Browser mit hohem Schweregrad (CVSS 8.8), werden aktiv durch RCE ausgenutzt. Beide CVE können ausgelöst werden, wenn die Opfer dazu verleitet werden, einfach eine bösartige Webseite zu besuchen. Google räumt ein, dass der Exploit-Code öffentlich zugänglich ist, sodass auch wenig erfahrene Cyberkriminelle in der Lage sind, Angriffe zu starten. Für Google Chrome wurden in den letzten Jahren immer wieder neue Schwachstellen entdeckt und aktiv ausgenutzt. Ein kurzer Blick auf Mozilla Firefox zeigt einen ähnlichen kontinuierlichen Strom kritischer und schwerwiegender Sicherheitslücken; sieben kritische und sechs schwerwiegende Sicherheitslücken wurden im August 2024 in Firefox bekanntgegeben, obwohl keine aktive Ausnutzung dieser Schwachstellen gemeldet wurde.

Der ständige Ansturm auf Sicherheitslücken in den wichtigsten Browsern unterstreicht die Notwendigkeit, dafür zu sorgen, dass Updates installiert werden, sobald sie verfügbar sind. Aufgrund des hohen Marktanteils von Chrome von über 65 % (über 70 %, wenn man den auf Chromium basierenden Microsoft Edge berücksichtigt) erhalten die Schwachstellen dieses Browsers erhöhte Aufmerksamkeit von Cyberkriminellen. In Anbetracht der hohen Anzahl schwerwiegender Schwachstellen, die sich auf die V8-Engine von Chromium auswirken (bisher mehr als 40 im Jahr 2024), könnten Google Workspace-Administratoren in Erwägung ziehen, V8 für alle Nutzer in ihrer Organisation zu deaktivieren, um die Sicherheit zu erhöhen. Weitere Optionen zur Erhöhung der Browsersicherheit in Szenarien mit hohem Risiko sind die Verwendung von Remote-Browser-Isolierung, Netzwerksegmentierung und das Booten von sicheren Baseline-Images, um sicherzustellen, dass Endpunkte nicht gefährdet sind.

Greenbone umfasst aktive authentifizierte Schwachstellentests, um anfällige Versionen von Browsern für Linux, Windows und macOS zu identifizieren.

Zusammenfassung

Neue kritische und remote ausnutzbare Schwachstellen wurden in einem rekordverdächtigen Tempo inmitten eines brandgefährlichen Cyberrisiko-Umfelds aufgedeckt. Von IT-Sicherheitsteams zu verlangen, dass sie zusätzlich zur Anwendung von Patches neu entdeckte Schwachstellen manuell nachverfolgen, stellt eine unmögliche Belastung dar und birgt das Risiko, dass kritische Schwachstellen unentdeckt und somit ungeschützt bleiben. Schwachstellenmanagement gilt als grundlegende Cybersecurity-Aktivität; Verteidiger großer, mittlerer und kleiner Unternehmen müssen Tools wie Greenbone einsetzen, um Schwachstellen in der gesamten IT-Infrastruktur eines Unternehmens automatisch zu suchen und zu melden. 

Die Durchführung automatischer Netzwerkschwachstellen-Scans und authentifizierter Scans der Host-Angriffsfläche jedes Systems kann die Arbeitsbelastung der Verteidiger drastisch reduzieren, indem sie ihnen automatisch eine Liste von Abhilfemaßnahmen zur Verfügung stellt, die nach dem Schweregrad der Bedrohung sortiert werden kann.

OpenVAS wurde 2005 ins Leben gerufen, als Nessus von Open Source auf eine proprietäre Lizenz umgestellt wurde. Zwei Unternehmen, Intevation und DN Systems, übernahmen das bestehende Projekt und begannen, es unter einer GPL v2.0-Lizenz weiterzuentwickeln und zu pflegen. Seitdem hat sich OpenVAS zu Greenbone entwickelt, der weltweit meist genutzten und gelobten Open-Source-Lösung für Schwachstellenscanner und Schwachstellenmanagement. Wir sind stolz darauf, Greenbone sowohl als kostenlose Community Edition für Entwickler als auch als eine Reihe von Unternehmensprodukten mit unserem Greenbone Enterprise Feed für den öffentlichen Sektor und private Unternehmen anzubieten.

Als „alter Hase“ kennt Greenbone die Spiele, die Anbieter von Cybersicherheitsprodukten gerne in der Öffentlichkeit spielen. Unsere eigenen Ziele bleiben jedoch davon unberührt, denn wir halten uns an die Wahrheit über unser Produkt und die branchenführende Abdeckung von Schwachstellentests. Als wir den kürzlich von einem Mitbewerber veröffentlichten Benchmark-Bericht zu Netzwerk-Schwachstellen-Scannern 2024 gelesen haben, waren wir gelinde gesagt etwas schockiert.

Als Open-Source-Schwachstellen-Scanner mit der höchsten Anerkennung ist es nur logisch, dass Greenbone in den Wettbewerb um den Spitzenplatz aufgenommen wurde. Wir fühlen uns zwar geehrt, Teil des Tests zu sein, aber einige Fakten haben uns sehr zu denken gegeben. Denn in den Details sehen wir uns gezwungen, einiges klarzustellen…

Was der Benchmark-Test ergibt

Der von Pentest-Tools durchgeführte Benchmark-Test bewertet die führenden Schwachstellen-Scanner anhand zweier Faktoren: der Erkennungsverfügbarkeit (die CVEs, für die jeder Scanner Erkennungstests anbietet) und der Erkennungsgenauigkeit (wie effektiv diese Erkennungstests sind).

Bei dem Benchmark wurden die kostenlose Community Edition von Greenbone und der Greenbone Community Feed mit den Unternehmensprodukten anderer Anbieter verglichen: Qualys, Rapid7, Tenable, Nuclei, Nmap und das eigene Produkt von Pentest-Tools. In dem Bericht belegte Greenbone Platz 5 bei der Erkennungsverfügbarkeit und Platz 4 bei der Erkennungsgenauigkeit. Nicht schlecht, wenn man es mit den Titanen der Cybersicherheitsbranche aufnimmt.

Das einzige Problem ist, dass Greenbone, wie oben erwähnt, auch ein Unternehmensprodukt hat. Wenn die Ergebnisse unter Verwendung unseres Greenbone Enterprise Feeds neu berechnet werden, sind die Ergebnisse nämlich deutlich anders – Greenbone gewinnt haushoch.

Was unsere Recherche ergibt

Balkendiagramm aus dem Benchmark 2024 für Netzwerkschwachstellenscanner: Greenbone Enterprise erreicht mit 78 % Verfügbarkeit und 61 % Genauigkeit die höchsten Werte

Greenbone Enterprise führt das Feld der Schwachstellen-Scanner an.

 

Die Erkennungsverfügbarkeit unseres Enterprise Feed führt in der gesamten Gruppe

Nach unseren internen Ergebnissen, die im SecInfo-Portal eingesehen werden können, verfügt der Greenbone Enterprise Feed über Erkennungstests für 129 der 164 im Test enthaltenen CVEs. Das bedeutet, dass die Erkennungsverfügbarkeit unseres Enterprise-Produkts um erstaunliche 70,5% höher ist als angegeben, womit wir uns von allen anderen abheben.

Wichtig: Die Greenbone Enterprise Feed Tests sind nicht etwas, das wir nachträglich hinzugefügt haben. Greenbone aktualisiert sowohl die Community- als auch Enterprise-Feeds täglich, und wir sind oft die ersten, die Schwachstellentests veröffentlichen, wenn ein CVE veröffentlicht wird. Ein Blick auf unsere Schwachstellentests zeigt, dass diese vom ersten Tag an verfügbar waren.

Erkennungsgenauigkeit: stark unterschätzt

Zusätzlich kommt hinzu, dass Greenbone nicht wie die anderen Scanner arbeitet. Die Art und Weise, wie Greenbone entwickelt wurde, verleiht ihm starke, branchenführende Vorteile. Zum Beispiel kann unser Scanner über eine API gesteuert werden, die es Benutzer:innen ermöglicht, ihre eigenen Tools zu entwickeln und alle Funktionen von Greenbone auf jede beliebige Weise zu steuern. Zweitens gibt es bei den meisten anderen Schwachstellen-Scannern nicht einmal eine Bewertung der Erkennungsqualität (Quality of Detection, QoD).

Der Autor des Berichts stellte klar, dass er einfach die Standardkonfiguration für jeden Scanner verwendete. Ohne die korrekte Anwendung des QoD-Filters von Greenbone konnte der Benchmark-Test jedoch die tatsächliche CVE-Erkennungsrate von Greenbone nicht angemessen bewerten. Bei Anwendung dieser Ergebnisse liegt Greenbone erneut vorn und erkennt schätzungsweise 112 der 164 CVEs.

Zusammenfassung

Wir fühlen uns zwar geehrt, dass unsere Greenbone Community Edition in einem kürzlich veröffentlichten Benchmark für Netzwerk-Schwachstellen-Scanner den 5. Platz bei der Erkennungsverfügbarkeit und den 4. Platz bei der Erkennungsgenauigkeit belegt, es liegt aber auf der Hand, dass dabei unser Enterprise-Produkt im Rennen sein sollte. Schließlich umfasst der Benchmark auch die Unternehmenslösungen anderer Anbieter.

Bei einer Neuberechnung unter Verwendung des Enterprise Feeds steigt die Erkennungsverfügbarkeit von Greenbone auf 129 der 164 getesteten CVEs, was 70,5% über dem gemeldeten Wert liegt. Außerdem wird bei Verwendung der Standardeinstellungen Greenbones Quality of Detection (QoD) nicht berücksichtigt. Bereinigt um diese Versäumnisse liegt Greenbone an der Spitze der Konkurrenz. Als weltweit meistgenutzter Open-Source-Schwachstellen-Scanner ist Greenbone weiterhin führend bei der Abdeckung von Schwachstellen, der rechtzeitigen Veröffentlichung von Schwachstellentests und wirklich unternehmenstauglichen Funktionen wie einer flexiblen API-Architektur, fortschrittlicher Filterung und Quality-of-Detection-Bewertungen.

IT-Sicherheitsteams müssen nicht unbedingt wissen, was CSAF ist, aber andererseits kann die Kenntnis dessen, was „unter der Haube“ einer Schwachstellenmanagement-Plattform passiert, einen Kontext dafür liefern, wie sich das Schwachstellenmanagement der nächsten Generation entwickelt und welche Vorteile ein automatisiertes Schwachstellenmanagement hat. In diesem Artikel geben wir eine Einführung in CSAF 2.0, was es ist und wie es das Schwachstellenmanagement in Unternehmen verbessern soll.

Die Greenbone AG ist offizieller Partner des Bundesamtes für Sicherheit in der Informationstechnik (BSI) bei der Integration von Technologien, die den CSAF 2.0 Standard für automatisierte Cybersecurity Advisories nutzen.

Was ist CSAF?

Das Common Security Advisory Framework (CSAF) 2.0 ist ein standardisiertes, maschinenlesbares Format für Hinweise auf Sicherheitslücken. CSAF 2.0 ermöglicht es der vorgelagerten Cybersecurity Intelligence Community, einschließlich Software- und Hardware-Anbietern, Regierungen und unabhängigen Forschern, Informationen über Schwachstellen bereitzustellen. Nachgelagert ermöglicht CSAF den Nutzern von Schwachstelleninformationen, Sicherheitshinweise von einer dezentralen Gruppe von Anbietern zu sammeln und die Risikobewertung mit zuverlässigeren Informationen und weniger Ressourcenaufwand zu automatisieren.

Durch die Bereitstellung eines standardisierten, maschinenlesbaren Formats stellt CSAF eine Entwicklung hin zu einem automatisierten Schwachstellenmanagement der nächsten Generation dar, das die Belastung der IT-Sicherheitsteams, die mit einer ständig wachsenden Zahl von CVE-Enthüllungen konfrontiert sind, verringern und die risikobasierte Entscheidungsfindung angesichts eines Ad-hoc-Ansatzes beim Austausch von Schwachstelleninformationen verbessern kann.

CSAF 2.0 ist der Nachfolger des Common Vulnerability Reporting Framework (CVRF) v1.2 und erweitert die Möglichkeiten seines Vorgängers, um mehr Flexibilität zu bieten.

Hier sind die wichtigsten Erkenntnisse:

  • CSAF ist ein internationaler offener Standard für maschinenlesbare Dokumente mit Hinweisen auf Schwachstellen, der die Markup-Sprache JSON verwendet.
  • Die CSAF-Aggregation ist ein dezentralisiertes Modell zur Verteilung von Schwachstelleninformationen.
  • CSAF 2.0 wurde entwickelt, um ein automatisiertes Schwachstellenmanagement der nächsten Generation in Unternehmen zu ermöglichen.

Der traditionelle Prozess des Schwachstellenmanagements

Der traditionelle Prozess der Schwachstellenverwaltung ist für große Unternehmen mit komplexen IT-Umgebungen ein schwieriger Prozess. Die Anzahl der CVEs, die in jedem Patch-Zyklus veröffentlicht werden, steigt in einem unkontrollierbaren Tempo [1][2]. Bei einem herkömmlichen Schwachstellenmanagementprozess sammeln IT-Sicherheitsteams Schwachstelleninformationen manuell über Internetrecherchen. Auf diese Weise ist der Prozess mit einem hohen manuellen Aufwand für das Sammeln, Analysieren und Organisieren von Informationen aus einer Vielzahl von Quellen und Ad-hoc-Dokumenten Formaten verbunden.

Zu diesen Quellen gehören in der Regel:

  • Datenbanken zur Verfolgung von Schwachstellen wie NIST NVD
  • Sicherheitshinweise der Produktanbieter
  • Nationale und internationale CERT-Beratungen
  • Bewertungen der CVE-Nummerierungsbehörde (CNA)
  • Unabhängige Sicherheitsforschung
  • Plattformen für Sicherheitsinformationen
  • Code-Datenbanken ausnutzen

Das letztendliche Ziel, eine fundierte Risikobewertung durchzuführen, kann während dieses Prozesses auf verschiedene Weise vereitelt werden. Empfehlungen, selbst die des Produktanbieters, sind oft unvollständig und werden in einer Vielzahl nicht standardisierter Formate geliefert. Dieser Mangel an Kohärenz erschwert eine datengestützte Entscheidungsfindung und erhöht die Fehlerwahrscheinlichkeit.

Lassen Sie uns kurz die bestehende Informationspipeline für Schwachstellen sowohl aus der Sicht der Ersteller als auch der Verbraucher betrachten:

Der Prozess der Offenlegung von Schwachstellen

Die in der National Vulnerability Database (NVD) des NIST (National Institute of Standards and Technology) veröffentlichten CVE-Datensätze (Common Vulnerability and Exposure) stellen das weltweit zentralste globale Repository für Schwachstelleninformationen dar. Im Folgenden finden Sie einen Überblick darüber, wie der Prozess der Offenlegung von Schwachstellen funktioniert:

  1. Produktanbieter werden durch ihre eigenen Sicherheitstests oder durch unabhängige Sicherheitsforscher auf eine Sicherheitslücke aufmerksam und setzen damit eine interne Richtlinie zur Offenlegung von Sicherheitslücken in Gang. In anderen Fällen können unabhängige Sicherheitsforscher direkt mit einer CVE Numbering Authority (CNA) zusammenarbeiten, um die Schwachstelle ohne vorherige Rücksprache mit dem Produktanbieter zu veröffentlichen.
  2. Schwachstellen-Aggregatoren wie NIST NVD und nationale CERTs erstellen eindeutige Tracking-IDs (z. B. eine CVE-ID) und fügen die gemeldete Schwachstelle einer zentralen Datenbank hinzu, in der Produktanwender und Schwachstellenmanagement-Plattformen wie Greenbone die Fortschritte verfolgen können.
  3. Verschiedene Interessengruppen wie der Produkthersteller, NIST NVD und unabhängige Forscher veröffentlichen Hinweise, die Informationen zu Abhilfemaßnahmen, voraussichtliche Termine für offizielle Patches, eine Liste der betroffenen Produkte, CVSS-Auswirkungsbewertungen und Schweregrade, Common Platform Enumeration (CPE) oder Common Weakness Enumeration (CWE) enthalten können, aber nicht müssen.
  4. Andere Anbieter von Informationen über Cyber-Bedrohungen, wie z. B. Known Exploited Vulnerabilities (KEV) von CISA und Exploit Prediction Scoring System (EPSS) von First.org, liefern zusätzlichen Risikokontext.

Der Prozess des Schwachstellenmanagements

Die Produktanwender sind für die Aufnahme von Schwachstelleninformationen und deren Anwendung verantwortlich, um das Risiko einer Ausnutzung zu mindern. Hier ein Überblick über den traditionellen Prozess des Schwachstellenmanagements in Unternehmen:

  1. Produktanwender müssen CVE-Datenbanken manuell durchsuchen und die Sicherheitshinweise überwachen, die ihre Software- und Hardware-Assets betreffen, oder eine Schwachstellenmanagement-Plattform wie Greenbone nutzen, die automatisch die verfügbaren Ad-hoc-Bedrohungshinweise zusammenfasst.
  2. Die Produktnutzer müssen die verfügbaren Informationen mit ihrem IT-Bestand abgleichen. Dies beinhaltet in der Regel die Pflege eines Bestandsverzeichnisses und die Durchführung eines manuellen Abgleichs oder die Verwendung eines Produkts zum Scannen von Schwachstellen, um den Prozess der Erstellung eines Bestandsverzeichnisses und der Durchführung von Schwachstellentests zu automatisieren.
  3. Die IT-Sicherheitsteams ordnen die entdeckten Schwachstellen nach dem kontextbezogenen Risiko für kritische IT-Systeme, Geschäftsabläufe und in einigen Fällen für die öffentliche Sicherheit.
  4. Die Ausbesserungen werden entsprechend der endgültigen Risikobewertung und den verfügbaren Ressourcen zugewiesen.

Was ist falsch am traditionellen Schwachstellenmanagement?

Herkömmliche oder manuelle Verfahren zur Verwaltung von Schwachstellen sind in der Praxis komplex und nicht effizient. Abgesehen von den operativen Schwierigkeiten bei der Implementierung von Software-Patches behindert der Mangel an zugänglichen und zuverlässigen Informationen die Bemühungen um eine wirksame Sichtung und Behebung von Schwachstellen. Die alleinige Verwendung von CVSS zur Risikobewertung wurde ebenfalls kritisiert [1][2], da es an ausreichendem Kontext für eine solide risikobasierte Entscheidungsfindung mangelt. Obwohl Plattformen zur Verwaltung von Schwachstellen wie z. B. Greenbone die Belastung der IT-Sicherheitsteams erheblich verringern, ist der Gesamtprozess immer noch häufig von geplagt von einer zeitaufwändigen manuellen Zusammenstellung von Ad-hoc-Hinweisen auf Schwachstellen, die unvollständige Informationen zur Folge haben kann.

Vor allem angesichts der ständig wachsenden Zahl von Schwachstellen besteht die Gefahr, dass die Zusammenstellung von Ad-hoc-Sicherheitsinformationen zu langsam ist und zu mehr menschlichen Fehlern führt, wodurch die Zeit für die Aufdeckung von Schwachstellen verlängert und die risikobasierte Priorisierung von Schwachstellen erschwert wird.

Fehlende Standardisierung führt zu Ad-hoc-Intelligenz

Dem derzeitigen Verfahren zur Offenlegung von Schwachstellen fehlt eine formale Methode zur Unterscheidung zwischen zuverlässigen Informationen von Anbietern und Informationen, die von beliebigen unabhängigen Sicherheitsforschern wie den Partner-CNAs bereitgestellt werden. Tatsächlich wirbt die offizielle CVE-Website selbst für die niedrigen Anforderungen, die für eine CNA-Mitgliedschaft gelten. Dies führt dazu, dass eine große Anzahl von CVEs ohne detaillierten Kontext herausgegeben wird, was eine umfangreiche manuelle Anreicherung im nachgelagerten Bereich erzwingt.

Welche Informationen aufgenommen werden, liegt im Ermessen des CNA, und es gibt keine Möglichkeit, die Zuverlässigkeit der Informationen zu klassifizieren. Ein einfaches Beispiel für dieses Problem ist, dass die betroffenen Produkte in einem Ad-hoc-Hinweis oft mit einer Vielzahl von Deskriptoren angegeben werden, die manuell interpretiert werden müssen. Zum Beispiel:

  • Version 8.0.0 – 8.0.1
  • Version 8.1.5 und höher
  • Version <= 8.1.5
  • Versionen vor 8.1.5
  • Alle Versionen < V8.1.5
  • 0, V8.1, V8.1.1, V8.1.2, V8.1.3, V8.1.4, V8.1.5

Skalierbarkeit

Da Anbieter, Prüfer (CNAs) und Aggregatoren verschiedene Verteilungsmethoden und Formate für ihre Hinweise verwenden, wird die Herausforderung der effizienten Verfolgung und Verwaltung von Schwachstellen operativ komplex und schwer zu skalieren. Darüber hinaus verschlimmert die zunehmende Offenlegung von Schwachstellen die manuellen Prozesse, überfordert die Sicherheitsteams und erhöht das Risiko von Fehlern oder Verzögerungen bei den Abhilfemaßnahmen.

Schwierige Bewertung des Risikokontextes

NIST SP 800-40r4 „Guide to Enterprise Patch Management Planning“ Abschnitt 3 empfiehlt die Anwendung von Schwachstellen-Metriken auf Unternehmensebene. Da das Risiko letztlich vom Kontext jeder Schwachstelle abhängt – Faktoren wie betroffene Systeme, potenzielle Auswirkungen und Ausnutzbarkeit -, stellt die derzeitige Umgebung mit Ad-hoc-Sicherheitsinformationen ein erhebliches Hindernis für ein solides risikobasiertes Schwachstellenmanagement dar.

Wie löst CSAF 2.0 diese Probleme?

Bei den CSAF-Dokumenten handelt es sich um wichtige Hinweise zu Cyber-Bedrohungen, mit denen die Lieferkette für Schwachstelleninformationen optimiert werden kann. Anstatt Ad-hoc-Schwachstellendaten manuell zu sammeln, können Produktanwender maschinenlesbare CSAF-Hinweise aus vertrauenswürdigen Quellen automatisch in einem Advisory Management System zusammenführen, das die Kernfunktionen des Schwachstellenmanagements wie Asset-Matching und Risikobewertung kombiniert. Auf diese Weise zielt die Automatisierung von Sicherheitsinhalten mit CSAF darauf ab, die Herausforderungen des traditionellen Schwachstellenmanagements durch die Bereitstellung zuverlässigerer und effizienterer Sicherheitsinformationen zu bewältigen und das Potenzial für das Schwachstellenmanagement der nächsten Generation zu schaffen.

CSAF 2.0 löst die Probleme des traditionellen Schwachstellenmanagements auf folgende Weise:

Zuverlässigere Sicherheitsinformationen

CSAF 2.0 behebt das Problem der Ad-hoc-Sicherheitsinformationen, indem es mehrere Aspekte der Offenlegung von Sicherheitslücken standardisiert. So erlauben die Felder zur Angabe der betroffenen Version standardisierte Daten wie Version Range Specifier (vers), Common Platform Enumeration (CPE), Paket-URL-Spezifikation, CycloneDX SBOM sowie den allgemeinen Produktnamen, die Seriennummer, die Modellnummer, die SKU oder den File-Hash zur Identifizierung betroffener Produktversionen.

Neben der Standardisierung von Produktversionen unterstützt CSAF 2.0 auch den Austausch von Schwachstellen (Vulnerability Exploitability eXchange, VEX), mit dem Produkthersteller, vertrauenswürdige CSAF-Anbieter oder unabhängige Sicherheitsforscher explizit den Status der Produktbehebung angeben können. VEX liefert Produktanwendern Empfehlungen für Abhilfemaßnahmen.

Die expliziten VEX-Status-Deklarationen sind:

  • Nicht betroffen: Es sind keine Abhilfemaßnahmen bezüglich einer Schwachstelle erforderlich.
  • Betroffen: Es werden Maßnahmen empfohlen, um eine Schwachstelle zu beheben oder zu beseitigen.
  • Behoben: Bedeutet, dass diese Produktversionen einen Fix für eine Sicherheitslücke enthalten.
  • Wird untersucht: Es ist noch nicht bekannt, ob diese Produktversionen von einer Sicherheitslücke betroffen sind. Ein Update wird in einer späteren Version zur Verfügung gestellt.

Effektivere Nutzung von Ressourcen

CSAF ermöglicht mehrere vor- und nachgelagerte Optimierungen des traditionellen Schwachstellenmanagement-Prozesses. Die OASIS CSAF 2.0-Dokumentation enthält Beschreibungen mehrerer Konformitätsziele, die es Cybersecurity-Administratoren ermöglichen, ihre Sicherheitsabläufe zu automatisieren und so ihre Ressourcen effizienter zu nutzen.

Hier sind einige Zielvorgaben für die Einhaltung der Vorschriften, auf die im CSAF 2.0 die eine effektivere Nutzung von Ressourcen über den traditionellen Prozess des Schwachstellenmanagements hinaus unterstützen:

  • Advisory Management System: Ein Softwaresystem, das Daten verarbeitet und CSAF-2.0-konforme Beratungsdokumente erstellt. Es ermöglicht den CSAF-Produktionsteams, die Qualität der zu einem bestimmten Zeitpunkt eingehenden Daten zu bewerten, sie zu überprüfen, zu konvertieren und als gültige CSAF-2.0-Sicherheitshinweise zu veröffentlichen. Auf diese Weise können CSAF-Produzenten die Effizienz ihrer Informationspipeline optimieren und gleichzeitig sicherstellen, dass korrekte Hinweise veröffentlicht werden.
  • CSAF Management System: Ein Programm, das CSAF-Dokumente verwalten kann und in der Lage ist, deren Details gemäß den Anforderungen des CSAF-Viewers anzuzeigen. Auf der grundlegendsten Ebene ermöglicht dies sowohl den vorgelagerten Produzenten als auch den nachgelagerten Konsumenten von Sicherheitshinweisen, deren Inhalt in einem für Menschen lesbaren Format zu betrachten.
  • CSAF Asset Matching System / SBOM Matching System: Ein Programm, das mit einer Datenbank von IT-Assets, einschließlich Software Bill of Materials (SBOM), integriert wird und Assets mit allen CSAF-Hinweisen abgleichen kann. Ein Asset-Matching-System dient dazu, einem Unternehmen, das CSAF nutzt, Einblick in seine IT-Infrastruktur zu verschaffen, festzustellen, wo anfällige Produkte vorhanden sind, und optimale Informationen zur automatischen Risikobewertung und -behebung zu liefern.
  • Technisches System: Eine Softwareanalyse-Umgebung, in der Analysewerkzeuge ausgeführt werden. Ein Engineering-System kann ein Build-System, ein Versionskontrollsystem, ein Ergebnisverwaltungssystem, ein Fehlerverfolgungssystem, ein Testausführungssystem usw. umfassen.

Dezentralisierte Cybersicherheitsinformationen

Der kürzlich verkündete Ausfall des CVE-Anreicherungsprozesses der NIST National Vulnerability Database (NVD) zeigt, wie riskant es sein kann, sich auf eine einzige Quelle für Schwachstelleninformationen zu verlassen. CSAF ist dezentralisiert und ermöglicht es nachgelagerten Nutzern von Schwachstellen, Informationen aus einer Vielzahl von Quellen zu beziehen und zu integrieren. Dieses dezentralisierte Modell des Informationsaustauschs ist widerstandsfähiger gegen den Ausfall eines Informationsanbieters, während die Last der Anreicherung von Schwachstellen effektiver auf eine größere Anzahl von Beteiligten verteilt wird.

Anbieter von IT-Produkten für Unternehmen wie RedHat und Cisco haben bereits ihre eigenen CSAF- und VEX-Feeds erstellt, während staatliche Cybersicherheitsbehörden und nationale CERT-Programme wie das deutsche Bundesamt für Sicherheit in der Informationstechnik (BSI) und die US-amerikanische Cybersecurity & Infrastructure Security Agency (CISA) ebenfalls CSAF-2.0-Austauschfunktionen entwickelt haben. 

Das dezentralisierte Modell ermöglicht es auch, dass sich mehrere Interessengruppen zu einer bestimmten Schwachstelle äußern, so dass die nachgeschalteten Verbraucher mehr Informationen über eine Schwachstelle erhalten. Mit anderen Worten: Eine Informationslücke in einem Gutachten kann von einem alternativen Hersteller geschlossen werden, der die genaueste Bewertung oder spezialisierte Analyse liefert.

Verbesserte Risikobewertung und Priorisierung von Schwachstellen

Insgesamt tragen die Vorteile des CSAF 2.0 zu einer genaueren und effizienteren Risikobewertung, Priorisierung und Abhilfemaßnahmen bei. Produktanbieter können direkt verlässliche VEX-Hinweise veröffentlichen, die Entscheidungsträgern im Bereich Cybersicherheit zeitnahe und vertrauenswürdige Informationen zu Abhilfemaßnahmen liefern. Außerdem dient das aggregierte Schweregradobjekt (aggregate_severity) in CSAF 2.0 als Vehikel, um verlässliche Dringlichkeits- und Kritikalitätsinformationen für eine Gruppe von Schwachstellen zu übermitteln, was eine einheitlichere Risikoanalyse und eine datengesteuerte Priorisierung von Abhilfemaßnahmen ermöglicht und die Expositionszeit kritischer Schwachstellen verkürzt.

Zusammenfassung

Herkömmliche Verfahren zum Management von Schwachstellen leiden unter mangelnder Standardisierung, was zu Problemen bei der Zuverlässigkeit und Skalierbarkeit führt und die Bewertung des Risikokontexts sowie die Fehlerwahrscheinlichkeit erschwert.

Das Common Security Advisory Framework (CSAF) 2.0 zielt darauf ab, den bestehenden Prozess des Schwachstellenmanagements zu revolutionieren, indem es eine zuverlässigere, automatisierte Sammlung von Schwachstelleninformationen ermöglicht. Durch die Bereitstellung eines standardisierten, maschinenlesbaren Formats für den Austausch von Schwachstelleninformationen im Bereich der Cybersicherheit und die Dezentralisierung ihrer Quelle versetzt CSAF 2.0 Organisationen in die Lage, zuverlässigere Sicherheitsinformationen zu nutzen, um ein genaueres, effizienteres und konsistenteres Schwachstellenmanagement zu erreichen.

Die Greenbone AG ist offizieller Partner des Bundesamtes für Sicherheit in der Informationstechnik (BSI) bei der Integration von Technologien, die den CSAF 2.0 Standard für automatisierte Cybersecurity Advisories nutzen.

Kontakt Kostenlos testen Hier kaufen Zurück zur Übersicht

Der März 2024 war ein ereignisreicher Monat für Schwachstellen und Cybersicherheit. Es war der zweite Monat in Folge, in dem das CVE-Enrichment (Common Vulnerability Exposure) auslief, was die Verteidiger in eine prekäre Lage brachte, da die Risiken weniger sichtbar waren. Der Linux-Kernel setzte sein hohes Tempo bei der Offenlegung von Schwachstellen fort und wurde als neue „CVE Numbering Authority“ (CNA) beauftragt. Darüber hinaus wurden mehrere kritische Schwachstellen in die KEV-Liste (Known Exploited Vulnerabilities) der CISA aufgenommen, darunter Microsoft Windows, Fortinet FortiClientEMS, alle wichtigen Browser und der Anbieter von „Continuous Integration And Delivery“-Software JetBrains.

Die wichtigsten Cybersecurity-Ereignisse im März:

Informationsfluss des NIST versiegt?

Das NVD-Team (National Vulnerability Database) des NIST (National Institute of Standards and Technology) hat die Anreicherung von CVE-Daten mit weiterführenden Informationen im Februar 2024 ohne Vorwarnung weitgehend eingestellt. Die CVE-Anreicherungsrate der NIST-Database verlangsamte sich im März auf knapp über 5%, und es wurde deutlich, dass es sich bei der abrupten Unterbrechung nicht nur um eine kurzfristige Störung handelte. Das gereicht Cybersicherheitsoperationen auf der ganzen Welt sehr zum Nachteil, da die NVD die größte zentrale Datenbank für Informationen über den Schweregrad von Schwachstellen ist. Ohne diese Anreicherungen stehen den Verantwortlichen für Cybersicherheit nur sehr wenige Informationen für die Priorisierung von Schwachstellen und die Entscheidungsfindung beim Risikomanagement zur Verfügung.

Experten in der Cybersicherheits-Community tauschten öffentlich Spekulationen aus, bis Tanya Brewer vom NIST auf dem VulnCon & Annual CNA Summit ankündigte, dass die nicht-regulatorische US-Regierungsbehörde einige Aspekte der NVD-Verwaltung an ein Industriekonsortium abtreten würde. Brewer erläuterte zwar nicht den genauen Grund für den Ausfall, kündigte aber mehrere zusätzliche Ziele für NIST NVD an:

  • Mögliche Einreichung von Zusatzinformationen durch mehr externe Stellen
  • Verbesserung der NVD-Software zur Identifizierung
  • Hinzufügen neuer Arten von Bedrohungsdaten wie EPSS und das NIST Bugs Framework
  • Verbesserung der Benutzerfreundlichkeit der NVD-Daten und Unterstützung neuer Anwendungsfälle
  • Automatisierung einiger Aspekte der CVE-Analyse

Es rappelt im Linux-Kernel

Insgesamt wurden im März 259 CVEs mit einer Beschreibung veröffentlicht, die mit „Im Linux-Kernel“ begannen. Dies ist der zweitaktivste Monat aller Zeiten bei der Veröffentlichung von Sicherheitslücken in Linux. Den bisherigen Rekord stellte der Vormonat mit insgesamt 279 CVEs auf. Der März markierte auch einen neuen Meilenstein für kernel.org, den Betreuer des Linux-Kernels, da dieser als CVE Numbering Authority (CNA) aufgenommen wurde. Kernel.org wird nun die Rolle der Zuweisung und Anreicherung von CVEs übernehmen, die den Linux-Kernel betreffen. Kernel.org versichert, dass CVEs nur für Schwachstellen vergeben werden, wenn ein Patch verfügbar ist, und CVEs werden nur für Versionen des Linux-Kernels vergeben, die aktiv unterstützt werden.

Brisante Sicherheitslücken in Fortinet-Produkten

In FortiOS und FortiClientEMS wurden mehrere schwere Sicherheitslücken aufgedeckt. Davon wurde CVE-2023-48788 in die KEV-Datenbank der CISA aufgenommen. Das Risiko, das von CVE-2023-48788 ausgeht, wird durch das Vorhandensein eines öffentlich zugänglichen PoC-Exploits (Proof of Concept) noch verstärkt. CVE-2023-48788 ist zwar vor allem eine SQL-Injection-Schwachstelle (CWE-89), kann aber in Verbindung mit der xp_cmdshell-Funktion von Microsoft SQL Server zur Remote Code Execution (RCE) ausgenutzt werden. Selbst wenn xp_cmdshell nicht standardmäßig aktiviert ist, haben Forscher gezeigt, dass die Schwachstelle über SQL-Injection aktiviert werden kann.

Greenbone verfügt über einen Network Vulnerability Test (NVT), mit dem Systeme identifiziert werden können, die von CVE-2023-48788 betroffen sind, über lokale Sicherheitsprüfungen, mit denen Systeme identifiziert werden können, die von CVE-2023-42790 und CVE-2023-42789 betroffen sind, sowie über eine weitere Prüfung, die von CVE-2023-36554 betroffene Systeme identifiziert. Ein PoC-Exploit für CVE-2023-3655 wurde auf GitHub veröffentlicht.

  • CVE-2023-48788 (CVSS 9.8 Kritisch): Eine SQL-Injection-Schwachstelle, die es einem Angreifer ermöglicht, nicht autorisierten Code oder Befehle über speziell gestaltete Pakete in Fortinet FortiClientEMS Version 7.2.0 bis 7.2.2 auszuführen.
  • CVE-2023-42789 (CVSS 9.8 Kritisch): Ein Out-of-bounds-Write in Fortinet FortiOS ermöglicht es einem Angreifer, nicht autorisierten Code oder Befehle über speziell gestaltete HTTP-Anfragen auszuführen. Betroffene Produkte sind FortiOS 7.4.0 bis 7.4.1, 7.2.0 bis 7.2.5, 7.0.0 bis 7.0.12, 6.4.0 bis 6.4.14, 6.2.0 bis 6.2.15, FortiProxy 7.4.0, 7.2.0 bis 7.2.6, 7.0.0 bis 7.0.12, 2.0.0 bis 2.0.13.
  • CVE-2023-42790 (CVSS 8.1 Hoch): Ein Stapel-basierter Buffer Overflow in Fortinet FortiOS ermöglicht es einem Angreifer, über speziell gestaltete HTTP-Anfragen nicht autorisierten Code oder Befehle auszuführen. Zu den betroffenen Produkten gehören FortiOS 7.4.0 bis 7.4.1, 7.2.0 bis 7.2.5, 7.0.0 bis 7.0.12, 6.4.0 bis 6.4.14, 6.2.0 bis 6.2.15, FortiProxy 7.4.0, 7.2.0 bis 7.2.6, 7.0.0 bis 7.0.12 und 2.0.0 bis 2.0.13.
  • CVE-2023-36554 (CVSS 9.8 Kritisch): FortiManager ist anfällig für eine Sicherheitslücke in der Zugriffskontrolle bei Backup- und Restore-Funktionen, die es Angreifern ermöglicht, nicht autorisierten Code oder Befehle über speziell gestaltete HTTP-Requests auszuführen. Betroffene Produkte sind FortiManager Version 7.4.0, Version 7.2.0 bis 7.2.3, Version 7.0.0 bis 7.0.10, Version 6.4.0 bis 6.4.13 und 6.2, alle Versionen.

Zero Day-Schwachstellen in allen wichtigen Browsern

Pwn2Own, ein spannender Hacking-Wettbewerb, fand vom 20. bis 22. März auf der Sicherheitskonferenz CanSecWest statt. Bei der diesjährigen Veranstaltung wurden 29 verschiedene Zero-Days entdeckt und über eine Million Dollar an Preisgeldern an Security-Forscher vergeben. Der unabhängige Teilnehmer Manfred Paul erhielt insgesamt 202.500 Dollar, davon 100.000 Dollar für zwei Zero-Day-Sandbox-Escape-Schwachstellen in Mozilla Firefox. Mozilla veröffentlichte rasch Updates für Firefox mit der Version 124.0.1.

Manfred Paul schaffte auch eine Remote Code Execution (RCE) in Apples Safari durch die Kombination von Pointer Authentication Code (PAC; D3-PAN) Bypass und Integer Underflow Zero-Days (CWE-191). PACs in Apples Betriebssystemen sind kryptografische Signaturen zur Überprüfung der Integrität von Pointern, um die Ausnutzung von Fehlern in korrumpierten Speichern zu verhindern. PAC wurde bereits früher für RCE in Safari umgangen. Manfred Paul hat Google Chrome und Microsoft Edge über die Schwachstelle Improper Validation of Specified Quantity in Input (CWE-1284) überlistet und damit das Browser-Exploit-Dreigestirn komplettiert.

Die Tatsache, dass alle großen Browser angegriffen wurden, unterstreicht das hohe Risiko, das der Besuch von nicht vertrauenswürdigen Internetseiten mit sich bringt, und die insgesamt mangelnde Sicherheit der großen Browserhersteller. Greenbone enthält Tests, um verwundbare Versionen von Firefox und Chrome zu identifizieren.

  • CVE-2024-29943 (CVSS 10 kritisch): Ein Angreifer konnte in Firefox über Out-of-bounds auf ein JavaScript-Objekt zugreifen, indem er die bereichsbasierte Begrenzungsprüfung austrickste. Diese Sicherheitslücke betrifft Versionen von Firefox vor 124.0.1.
  • CVE-2024-29944 (CVSS 10 kritisch): Firefox behandelte Message Manager-Listener falsch, was einem Angreifer erlaubt, einen Event Handler in ein privilegiertes Objekt einzuschleusen, um beliebigen Code auszuführen.
  • CVE-2024-2887 (hoch): Eine Type-Confusion-Schwachstelle (CWE-843) in der Implementierung von WebAssembly (Wasm) im Chrome-Browser.

Neue, aktiv ausgenutzte Microsoft-Schwachstellen

Microsofts Sicherheitshinweis vom März enthielt insgesamt 61 Sicherheitslücken, die sich auf viele Produkte auswirken. Der Windows-Kernel wies mit insgesamt acht CVEs die meisten Schwachstellen auf, von denen fünf als besonders schwerwiegend eingestuft wurden. Microsoft WDAC OLE DB provider for SQL, Windows ODBC Driver, SQL Server und Microsoft WDAC ODBC Driver sind zusammen für zehn CVEs mit hohem Schweregrad verantwortlich. Für keine der Schwachstellen in dieser Gruppe gibt es Workarounds, was bedeutet, dass Updates auf alle betroffenen Produkte angewendet werden müssen. Greenbone enthält Schwachstellentests, um die neu bekannt gewordenen Schwachstellen aus Microsofts Sicherheitshinweis zu erkennen.

Microsoft hat bisher sechs der neuen Sicherheitslücken vom März als „Ausnutzung wahrscheinlich“ gekennzeichnet, während zwei neue Sicherheitslücken, die Microsoft-Produkte betreffen, der CISA KEV-Liste hinzugefügt wurden; CVE-2023-29360 (CVSS 8.4 hoch), die den Microsoft Streaming Service betrifft, und CVE-2024-21338 (CVSS 7.8 hoch), die im Jahr 2023 veröffentlicht wurden, erhielten im März den Status „Aktiv ausgenutzt“.

CVE-2024-27198: kritische Schwachstelle in JetBrains TeamCity

TeamCity ist ein beliebter Continuous-Integration- und Continuous-Delivery-Server (CI/CD), der von JetBrains entwickelt wurde, dem Unternehmen, das auch hinter weit verbreiteten Entwicklungstools wie IntelliJ IDEA, der führenden integrierten Entwicklungsumgebung (IDE) für Kotlin, und PyCharm, einer IDE für Python, steht. TeamCity wurde entwickelt, um Softwareentwicklungsteams bei der Automatisierung und Rationalisierung ihrer Build-, Test- und Deployment-Prozesse zu unterstützen, und konkurriert mit anderen CI/CD-Plattformen wie Jenkins, GitLab CI/CD, Travis CI und Azure DevOps. TeamCity hat einen geschätzten Anteil von knapp 6 % am Gesamtmarkt für Continuous Integration and Delivery und rangiert insgesamt an dritter Stelle. Nach Angaben von JetBrains nutzen mehr als 15,9 Millionen Entwickler ihre Produkte, darunter 90 der Fortune Global Top 100-Unternehmen.

Angesichts der Marktposition von JetBrains wird eine kritische Schwachstelle in einem ihrer Produkte schnell die Aufmerksamkeit potenzieller Angreifer auf sich ziehen. Innerhalb von drei Tagen nach der Veröffentlichung von CVE-2024-27198 wurde die Schwachstelle in den KEV-Katalog der CISA aufgenommen. Der Schwachstellen-Feed von Greenbone Enterprise umfasst Tests zur Identifizierung betroffener Produkte, darunter eine Versionsprüfung und den Active Check, bei dem eine manipulierte HTTP-GET-Anfrage gesendet und die Antwort analysiert wird.

In Kombination ermöglichen CVE-2024-27198 (CVSS 9.8 kritisch) und CVE-2024-27199 einem Angreifer, die Authentifizierung über einen alternativen Pfad oder Kanal (CWE-288) zu umgehen, um geschützte Dateien zu lesen, auch solche außerhalb des eingeschränkten Verzeichnisses (CWE-23), und begrenzte Admin-Aktionen durchzuführen.

Zusammenfassung

Der Frühling beginnt mit wachsenden Software-Schwachstellen aufgrund des NIST NVD-Ausfalls und der aktiven Ausnutzung mehrerer Schwachstellen in Unternehmens- und Verbrauchersoftware. Positiv ist, dass mehrere Zero-Day-Schwachstellen, die alle wichtigen Browser betreffen, identifiziert und gepatcht wurden.

Die Tatsache, dass ein einzelner Forscher in der Lage war, so schnell alle wichtigen Browser auszunutzen, ist jedoch ein ernsthafter Weckruf für alle Unternehmen, da der Browser eine so grundlegende Rolle im modernen Unternehmensbetrieb spielt. Schwachstellenmanagement ist nach wie vor ein Kernelement der Cybersicherheitsstrategie. Durch regelmäßiges Scannen der IT-Infrastruktur auf Schwachstellen wird sichergestellt, dass die neuesten Bedrohungen identifiziert und behoben werden können – und so die Lücken geschlossen werden, die Angreifer für den Zugriff auf wichtige Systeme und Daten auszunutzen versuchen.


Kontakt Kostenlos testen Hier kaufen Zurück zur Übersicht

Zwei Sicherheitslücken in Sharepoint, beide aus dem vergangenen Jahr, bereiten Sharepoint-Administratoren derzeit Kopfzerbrechen. Weil Angreifer eine Kombination aus den beiden Schwachstellen zunehmend häufiger ausnutzen, warnt jetzt auch die Cybersecurity Infrastructure Security Agency CISA. Betroffene Kunden des Greenbone Enterprise Feed werden bereits seit Juni 2023 gewarnt.

Tracking-News: Critical Vunerability in MS Sharepoint

Remote Priviledge Execution

Die beiden Schwachstellen CVE-2023-29357 und CVE-2023-24955 zusammen erlauben es Angreifern, aus der Ferne Administratorenrechte im Sharepoint-Server eines Unternehmens zu erlangen. Details über den Angriff wurden bereits im September 2023 auf der Pwn2Own-Konferenz in Vancouver 2023 veröffentlicht und finden sich beispielsweise im Blog der Singapur Starlabs.

Massive Angriffe führten jetzt dazu, dass die CISA jüngst eine Warnung zu diesen Lücken aussprach und die CVE-2023-29357 in ihren Katalog der bekannten Exploited Vulnerabilities aufnahm. Greenbone hat jedoch bereits seit etwa Juni 2023 authentifizierte Versionsprüfungen für beide CVEs und seit Oktober 2023 auch eine aktive Prüfung für CVE-2023-29357. Kunden der Enterprise-Produkte haben diese CVEs bereits seit mehreren Monaten als Bedrohung gemeldet bekommen – im authentifizierten und unauthentifizierten Scan-Modus.

Microsoft rät seinen Kunden auf seiner Webseite zum Update auf die SharePoint Server 2019 Version vom 13 Juni 2023, (KB5002402), die fünf kritische Lücken behebt, darunter auch die erste von der CISA genannte CVE. Ferner sollten alle Administratoren die Installation der Antivirensoftware AMSI durchführen und Microsoft Defender im Sharepoint-Server aktivieren. Anderenfalls könnten Angreifer die Authentifizierung mit gefälschten Authentifizierungstoken umgehen und sich Administratorrechte verschaffen.

Das frühzeitige Erkennen und Erfassen von Schwachstellen im Unternehmen ist ein wichtig, wie die vielen Meldungen über schädigende Schwachstellen belegen. Hier können die Greenbone-Produkte viel Arbeit abnehmen und für Sicherheit sorgen – als Hardware- oder als virtuelle Appliance. Der Greenbone Enterprise Feed, aus dem sich alle Sicherheitsprodukte Greenbones speisen, erhält tägliche Updates und deckt damit einen hohen Prozentsatz der Risiken ab.

Kontakt Kostenlos testen Hier kaufen Zurück zur Übersicht