Schlagwortarchiv für: CVE

Am 27. August 2025, veröffentlichten mehr als 20 Sicherheitsbehörden eine Cybersicherheitsempfehlung mit dem Titel „Countering Chinese State-Sponsored Actors Compromise of Networks Worldwide to Feed Global Espionage System“

 

Zu den veröffentlichenden Behörden gehörten 

  • die Nationale Sicherheitsbehörde der Vereinigten Staaten (NSA)
  • Cybersecurity and Infrastructure Security Agency (CISA) der Vereinigten Staaten
  • Federal Bureau of Investigation (FBI) der Vereinigten Staaten
  • Bundesnachrichtendienst (BND) der Bundesrepublik Deutschland
  • Bundesamt für Verfassungsschutz (BfV) der Bundesrepublik Deutschland
  • Bundesamt für Sicherheit in der Informationstechnik (BSI) der Bundesrepublik Deutschland

und viele weitere.

Das sind schlechte Nachrichten. Die gute Nachricht ist, dass Greenbone Ihnen mittels der OPENVAS-Produkte helfen kann, alle Schwachstellen in diesem Angriff zu erkennen.

  1. CVE-2024-21887: Ivanti Connect Secure und Ivanti Policy Secure: Web-Komponenten-Command-Injection-Schwachstelle, die häufig in Kombination mit CVE-2023-46805 (Authentifizierungsumgehung) ausgenutzt wird.
  2. CVE-2024-3400: Palo Alto Networks PAN-OS GlobalProtect: Beliebige Dateierstellung führt zu Betriebssystem-Befehlsinjektion. Diese CVE ermöglicht die Ausführung von Remote-Code ohne Authentifizierung (RCE) auf Firewalls, wenn GlobalProtect auf bestimmten Versionen/Konfigurationen aktiviert ist.
  3. CVE-2023-20273: Schwachstelle im Cisco Internetworking Operating System (IOS) XE Software Web Management User Interface ermöglicht Post-Authentication Command Injection/Privilege Escalation [T1068], häufig verkettet mit CVE-2023-20198 für Erstzugang zur Ausführung von Code als Root.
  4. CVE-2023-20198: Cisco IOS XE Web User Interface Authentication Bypass Schwachstelle.
  5. CVE-2018-0171: Cisco IOS und IOS XE Smart Install Remote Code Execution Schwachstelle.

Wenn Sie unsere Produkte nutzen, empfehlen wir dringend, einen System-Scan durchzuführen und Patch-Anweisungen zu folgen, sollten Ihre Systeme betroffen sein.

Der Juli 2025 Threat Report folgt einem breit angelegten Ansatz, um die top Cyber-Bedrohungen des Monats zu behandeln. Die Microsoft SharePoint Schwachstellen unter dem Namen “ToolShell” dominierten letzten Monat die Schlagzeilen; werfen sie einen Blick auf unseren ToolShell-Artikel für eine genaue Analyse. Im Juli wurden über 4.000 CVEs veröffentlicht, von denen beinahe 500 mit einem CVSS-Score von 9.0 oder höher als kritisch eingestuft wurden. Für Verteidigungsteams stellt das Volumen an Risiken ein wahres Zermürbungsgefecht dar. Greenbone stellte zur Unterstützung im Juli annähernd 5000 neue Erkennungstests bereit. Diese erlauben Verteidigungsteams, Software-Schwachstellen in ihrer IT-Umgebung zu erkennen, den Patch-Stand zu überprüfen und Angreifende davon abzuhalten, die Oberhand zu gewinnen.

Blog Banner Threat - report July 2025

Critische Cisco Schwachstelle ermöglicht unauthentifizierte Ausführung von Remote-Code (RCE) mit Root-Berechtigungen und mehr

Cisco hat die aktive Ausnutzung der Cisco Identity Services Engine (ISE) und Cisco ISE-PIC (Passive Identity Controller) Versionen 3.3 und 3.4 bestätigt. Die schwerwiegendsten Schwachstellen sind CVE-2025-20281, CVE-2025-20337, und CVE-2025-20282; alle CVSS 10. CVE-2025-20281 und CVE-2025-20337 wurden in den CISA KEV (Katalog bekannter, ausgenutzter Schwachstellen) aufgenommen. Jede dieser Schwachstellen kann durch das Übermitteln einer bösartigen API-Anfrage ausgenutzt werden, um Code mit Root-Privilegien auszuführen. Mehrere nationale CERT-Agenturen gaben Warnungen heraus: EU-CERT, CSA Singapore, NHS UK und NCSC Ireland. Cisco rät, umgehend Sicherheitsupdates zu installieren; funktionierende Workarounds sind nicht verfügbar. Der OPENVAS ENTERPRISE FEED enthält entsprechende Versionserkennungstest [1][2][3].

Anfang Juli schlug außerdem eine weitere kritische CVE in Cisco Unified Communications Manager Wellen. CVE-2025-20309 (CVSS 10) ermöglicht den Fernzugang mit Root-Berechtigungen via hart kodierten SSH Zugangsdaten. Belgiens CERT.be und NSSC Ireland gaben Warnungen heraus und die Schwachstelle wurde im AUSCERT-Wochenrückblick behandelt.

Aktive Angriffe treffen CrushFTP- und WingFTP-Server

Hochrisiko-CVEs in CrushFTP und WingFTP wurden kurz nach ihrer Veröffentlichung in den CISA KEV-Katalog aufgenommen, begleitet von globalen CERT-Warnungen [1][2][3]. FTP-Server sind häufig an das öffentliche Internet exponiert, allerdings können auch Instanzen in lokalen Netzwerken Hackenden Möglichkeiten für Persistenz und laterale Bewegung bieten [4]. FTP-Server speichern überdies häufig sensible Daten, was das Risiko für Ransomware-Angriffe erhöht.

  • CVE-2025-54309 (CVSS 9.8, EPSS ≥ 91. Perzentil): CrushFTP is anfällig für ungeschützte alternative Kanal-Schwachstellen [CWE-420], wenn das DMZ Proxy-Feature nicht genutzt wird. Die Software handhabt AS2-Validierung inkorrekt, was Remote-Administrationszugriff über HTTPS ermöglicht. Der OPENVAS ENTERPRISE FEED verfügt über einen Remote-Banner-Erkennungstest, um anfällige Instanzen zu erkennen. Nutzende sollten umgehend auf CrushFTP 10.8.5_12 (oder höher), beziehungsweise 11.3.4_23 (oder höher) aktualisieren.
  • CVE-2025-47812 (CVSS 10, EPSS ≥ 99. Perzentil): Nicht bereinigte Null-Byte-Zeichen in der Web-Oberfläche von WingFTP vor Version 7.4.4 erlauben die Ausführung von Remote-Lua-Code mit den Berechtigungen des FTP-Services (standardmäßig root oder SYSTEM). Greenbone liefert Aktive Prüfung und Versionsprüfung zur Identifizierung anfälliger Instanzen. Es wird dringend zu einem Update auf Version 7.4. oder höher geraten.

Patch-Umgehung ermöglicht Beliebigen Datei-Zugang in Node.js

CVE-2025-27210 (CVSS 7.5) ermöglicht die Umgehung von Sicherheitsmaßnahmen für CVE-2025-23084 (CVSS 5.6), einer bereits im januar 2025 adressierten Schwachstelle von Node.js auf Windows-Plattformen. Schätzungsweise 4.8% aller Web-Server weltweit und viele On-Premises und Cloud-native Anwendungen nutzen Node.js. Nationale CERT-Mitteilungen warnten vor hohen Risiken. [1][2] Mindestens ein Funktionsnachweis-Exploit (PoC, Proof of Concept) ist öffentlich verfügbar. [3] Sowohl der OPENVAS ENTERPRISE FEED als auch der COMMUNITY FEED enthalten einen Versionserkennungstest.

Die als Pfadmanipulation [CWE-22] (Path Traversal) klassifizierte Schwachstelle beruht auf den integrierten Funktionen path.join und path.normalize(), die nicht hinreichend auf Windows-Gerätenamen filtern, darunter reservierte Namen für spezielle Systemgeräte wie COM, PRN und AUX [4]. Dies kann aus der Ferne ausgenutzt werden, um Verzeichnisschutzmaßnahmen zu umgehen, wenn Eingaben von Nutzenden an die genannten Funktionen übergeben werden. Betroffen sind Node.js Versionen 20.x vor 20.19.4, sowie 22.x vor 22.17.1 und 24.x vor 24.4.1.

CVE-2025-37099: Vollständige Fernübernahme von HPE Insight Remote Support

Neue Schwachstellen in HPE Insight Remote Support stellen ein enormes Risiko für vollständige Systemübernahme innerhalb von Unternehmensinfrastrukturen dar. IRS wird in lokalen Unternehmensnetzwerken eingesetzt, um Hardware-Gesundheitsprüfungen, Infrastruktur-Monitoring und die Erstellung von Support-Tickets zu automatisieren.

CVE-2025-37099 (CVSS 9.8) ermöglicht die unauthentifizierte Ausführung von Remote-Code (RCE) auf SYSTEM-Ebene durch unzureichende Eingabevalidierung [CWE-20] in der processAttatchmentDataStream-Logik. Dadurch können bösartige Payloads als Code ausgeführt werden [CWE‑94][1]. Angreifende können somit Schadsoftware auf verwalteten Systemen ausführen. Auch wenn entsprechende Vorfälle nicht explizit dokumentiert sind, könnte der Zugang auf SYSTEM-Ebene ebenfalls genutzt werden, um Überwachungsprotokolle zu manipulieren oder zu löschen und damit Aktivitäten zu verschleiern. Da der betroffene Dienst häufig mit Geräten wie Servern und iLO-Controllern interagiert, könnte die Kompromittierung laterale Bewegung ermöglichen. [2]

HPE IRS sollte umgehend auf Version 7.15.0.646 oder höher aktualisiert werden. Die koordinierte Offenlegung beinhaltete überdies zwei weitere CVEs: CVE-2025-37098 und CVE-2025-37097, beide mit CVSS 7.5. Ein Versionserkennungstest zur Identifizierung anfälliger Instanzen und zur Verifizierung des Patch-Status zwecks Compliance ist im OPENVAS ENTERPRISE FEED enthalten.

Kritische Sicherheitsupdates für DELL-CVEs mit erhöhten EPSS-Werten

Kumulative Sicherheitsupdates für eine beträchtliche Menge an Dell-Produkten wurden veröffentlicht, um Sicherheitslücken in diversen Komponenten zu schließen. Der kanadische Cyber-Sicherheitsdienst CSE gab im Juli bezüglich dieser Updates drei Benachrichtigung heraus [1][2][3]. Folgend finden Sie einige der kritischen CVEs aus diesem Batch, die alle mit dem OPENVAS ENTERPRISE FEED erkannt werden können [1][2][3][4][5]:

  • CVE-2024-53677 (CVSS 9.8, EPSS 99. Perzentil): Dell Avamar Data Store und Avamar Virtual Edition erhielten Updates bezüglich einer Schwachstelle in Apache Struts. Alternative Gegenmaßnahmen oder Workarounds sind nicht verfügbar. Eine Liste betroffener Produkte ist in Dells Sicherheitsbulletin zu finden.
  • CVE-2025-24813 (CVSS 9.8, EPSS 99. Perzentil): Dell Secure Connect Gateway vor Version 5.30.0.14 ist von einer Apache Tomcat-Schwachstelle und weiteren kritischen CVEs betroffen. Das Update ist laut Dell von kritischer Wichtigkeit.
  • CVE-2004-0597 (CVSS 10, EPSS 99. Perzentil): Dell Networker birgt kritische Pufferüberlauf-Schwachstellen (Buffer Overflow) in libpng, die Angreifenden unter anderem die Ausführung von Remote-Code aus der Ferne durch den Einsatz bösartig manipulierter PNG-Dateien ermöglichen. Mehr Informationen dazu in Dells Sicherheitsbulletins [1][2][3][4].
  • CVE-2016-2842 (CVSS 9.8, EPSS ≥ 98. Perzentil): Dell Data Protection Advisor ist von Schwachstellen in diversen Komponenten betroffen, darunter CVE-2016-2841 in OpenSSL, das die Speicherzuweisung nicht korrekt kontrolliert und somit DoS (Denial of Service) und unter Umständen RCE (Ausführung von Remote-Code) ermöglicht. Weitere Informationen sind im Sicherheitsbulletin zu finden.
  • CVE-2025-30477 (CVSS 4.4): Dell PowerScale nutzt einen unsicheren kryptografischen Algorithmus. Die Folge ist mögliche, unbefugte Informationsfreigabe. Kritische PowerScale-Schwachstellen wurden im Juni 2025 behoben. Mehr Informationen in den Sicherheitsbulletins [1][2].

Eine Kumulative Zusammenfassung von 2025 D-LINK-Schwachstellen

Der OPENVAS ENTERPRISE FEED und der COMMUNITY FEED decken mit aktuell 27 Schwachstellentests den Großteil der D-Link-Produkte betreffenden CVEs ab, die 2025 veröffentlicht wurden. In Anbetracht der Relevanz von Sicherheit am Netzwerkrand (network edge security) sollten Schwachstellen in Routern und anderen Gateway-Geräten einen besonderen Stellenwert für Sicherheitsteams innehaben. Nach der Beilegung einer US-Regulierungsmaßnahme zwischen D-Link und der Federal Trade Commission erklärte sich D-Link 2019 bereit, ein umfassendes Sicherheitsprogramm umzusetzen. Es bleibt jedoch in Frage zu stellen, ob diese Maßnahmen weitreichend genug sind. Ivanti-Produkte zum Beispiel waren in den letzten Jahren von zahlreichen Schwachstellen hoher Kritikalität betroffen [1][2][3][4][5], von denen einige in Ransomware-Angriffen ausgenutzt wurden.

Adobe schließt kritische Sicherheitslücken in ColdFusion

Sicherheitsupdates für ColdFusion 2025, 2023, und 2021 behandeln 13 neue CVEs; fünf kritische Schwachstellen, darunter XEE (CVE-2025-49535, CVSS 9.3), hart codierte Zugangsdaten (CVE-2025-49551, CVSS 8.8), OS-Befehlsinjektion, XML-Injektion und SSRF. 2023 wurde die ColdFusion-Schwachstelle CVE‑2023‑26360 (CVSS 9.8) von Bedrohungsakteuren genutzt, um sich initialen Zugriff auf US-amerikanische zivile Bundesbehörden zu verschaffen.

Eine Remote-Versionsprüfung zum Erkennen ungepatchter Instanzen ist im OPENVAS ENTERPRISE FEED enthalten. Umgehende Aktualisierungen auf Update 3 (ColdFusion 2025), Update 15 (2023) oder Update 21 (2021) sind dringend empfohlen.

Splunk Enterprise aktualisiert Komponenten mit kritischer Kritikalität

Kumulative Updates für Splunk Enterprise betreffen diverse Komponenten von Dritten, unter anderem golang, postgres, aws-sdk-java und idna. Einige Komponenten wiesen eine kritische CVSS-Kritikalität auf, wie beispielsweise CVE-2024-45337 (CVSS 9.1) mit einem EPSS-Perzentil von ≥ 97%, was auf eine hohe Wahrscheinlichkeit von Exploit-Aktivität hinweist. CERT-FR und der kanadische Cyber CSE haben Warnungen zu den Splunk-Bulletins vom Juli veröffentlicht. Der Patch-Stand kann mit einem Versionstest aus dem OPENVAS ENTERPRISE FEED geprüft werden. Schwachstellentests für frühere Splunk-Sicherheitsbulletins und CVEs sind ebenfalls enthalten.

Oracle behebt eine Reihe hoch kritischer VirtualBox Schwachstellen

Mitte Juli wurden mehrere CVEs im Zusammenhang mit Oracle VM VirtualBox Version 7.1.10 veröffentlicht. Diese ermöglichen lokal privilegierten Angreifenden (mit Zugang zur Host-Infrastruktur oder auf die Ausführungsumgebung der Gast-VM), VirtualBox zu kompromittieren, was Privilegieneskalation oder die volle Kontrolle über die Kernkomponente des Hypervisors ermöglicht. Der Integer-Overflow-Bug CVE‑2025‑53024 (CVSS 8.2) im VMSVGA virtual device kommt durch unzureichende validierung von Eingaben zustande und führt zu Speicherkorruption mit Potenzial für komplette Kompromittierung des Hypervisors. [1] OPENVAS ENTERPRISE FEED  und COMMUNITY FEED enthalten Versionserkennungstests für Windows, Linux, und macOS.

Schwachstelle nach Authentifizierung ermöglicht RCE in SonicWall SMA100

CVE-2025-40599 (CVSS 9.1) ist eine Schwachstelle für beliebiges Hochladen von Dateien nach Authentifizierung in SonicWall SMA 100-Appliances. Sie ermöglicht Remote-Angreifenden mit Administrationsrechten die Ausführung von beliebigem Code sowie persistenten Zugriff. Schwache oder gestohlene Zugangsdaten erhöhen das Risiko dieser Schwachstelle. Betroffen sind die Modelle SMA 210, 410 und 500v, Versionen 10.2.1.15-81sv und darunter. SonicWalls Sicherheitsbulletin zufolge gibt es keinen wirksamen Workaround. Der OPENVAS ENTERPRISE FEED beinhaltet einen Remote-Versionstest zur Identifizierung anfälliger Geräte.

Neue MySQL CVEs ermöglichen Authentifizierte DoS-Attacken

Inmitten der Vielzahl von Schwachstellen, die unautorisierte RCE ermöglichen, sind solche, die lediglich einen Denial of Service (DoS) verursachen, leicht zu übersehen. Im Juli wurden zahlreiche DoS-Schwachstellen und zugehörige Sicherheitsupdates für MySQL 8 und 9 veröffentlicht [1]. Diese Sicherheitslücken erfordern für eine Ausnutzung zwar privilegierten Zugriff, jedoch bieten Managed Service Provider (MSP) gemeinsames MySQL-hosting für kleine und mittlere Unternehmen (KMU), Behörden und Non-Profit-Organisationen an, die den Aufwand für das Betreiben einer eigenen Datenbankinfrastruktur vermeiden möchten. In einem solchen Szenario erhalten Nutzende Zugriff zu separaten Datenbanken auf derselben MySQL-Serverinstanz. Ist eine solche Serverinstanz nicht gepatcht, ist es möglich, andere Organisationen auf derselben Instanz zu beeinträchtigen. Diese Schwachstellen unterstreichen die Wichtigkeit starker Zugangsdaten und der Verteidigung gegen Brute-Force- und Password-Spraying-Angriffe.

Remote Versionserkennungstests für alle untenstehenden CVEs sind verfügbar. Diese sind sowohl im OPENVAS ENTERPRISE FEED, als auch im COMMUNITY FEED zu finden. Sie decken Linux und Windows MySQL Installationen ab.

CVE ID

Betroffene Versionen

Auswirkung

Zugriffsvektor

Patch Status

CVE-2025-50078

(CVSS 6.5)

8.0.0–8.0.42, 8.4.0–8.4.5, 9.0.0–9.3.0

DoS (hang/crash)

Authentifizierter Fernzugriff

Gepatcht (July 2025)

CVE-2025-50082

(CVSS 6.5)

8.0.0–8.0.42, 8.4.0–8.4.5, 9.0.0–9.3.0

DoS (crash)

Authentifizierter Fernzugriff

Gepatcht (July 2025)

CVE-2025-50083

(CVSS 6.5)

8.0.0–8.0.42, 8.4.0–8.4.5, 9.0.0–9.3.0

DoS (crash)

Authentifizierter Fernzugriff

Gapatcht (July 2025)

 

Dieses Jahr werden die IT-Sicherheitsteams mit einer Flut neuer Sicherheitsrisiken überschwemmt. Bei der Behebung von Schwachstellen die Prioritäten richtig zu setzen, ist ein Dauerthema in der IT-Sicherheits- und Risikoanalyse. So müssen täglich neue Nadeln in einem Heuhaufen von Aufgaben gefunden werden. Zu den Faktoren, die dieses Problem noch verschärfen, gehören der Fachkräftemangel in der Cybersicherheit, neuartige Angriffstechniken und die zunehmende Offenlegung von CVEs (Common Vulnerabilities and Exposures).

Um diesem Bedarf an mehr Präzision und Effizienz gerecht zu werden, entstehen aktuell zahlreiche neue Priorisierungsmetriken. Nicht, dass mehr Risikoperspektiven etwas Schlechtes wären, aber die bereits überforderten Verteidigenden befinden sich in einer schwierigen Lage: Sie müssen sich entscheiden, ob sie weitermachen oder innehalten wollen, um den Wert neuer Metriken besser abzuschätzen.

Die im Mai 2025 vom NIST (National Institute of Standards and Technology) veröffentlichte Metrik Likely Exploited Vulnerabilities (LEV; Wahrscheinlich ausgenutzte Schwachstellen) konsolidiert historische Zeitreihen aus EPSS (Exploit Prediction Scoring System) und den Status der Ausnutzung in freier Wildbahn. Dadurch berechnet LEV um unter anderem eine aggregierte Risikobewertung. Dieser Artikel erläutert, was LEV ist und welche zusätzlichen Gleichungen in dem kürzlich veröffentlichten technischen Whitepaper des NIST (NIST CSWP 41) enthalten sind.

Der Grund für LEV (Likely Exploited Vulnerabilities)

LEV verwendet die historische EPSS-Zeitreihe einer CVE, um einen kumulativen Risikowert zu berechnen, der die Wahrscheinlichkeit darstellt, dass sie jemals aktiv ausgenutzt wurde. Aber worin unterscheidet sich dies von EPSS selbst? Ist EPSS, ein Modell aus dem Machine Learning (ML), das fast 1.500 Vorhersagemerkmale enthält, nicht gut genug?

Einige akademische Kritiken haben ergeben, dass EPSS kritische Schwachstellen übersehen kann. Die direkte Beobachtung historischer EPSS-Daten zeigt, dass die Werte für einen sehr kurzen Zeitraum (ein bis zwei Tage) in die Höhe schnellen können. Danach fallen sie meist wieder auf einen moderaten oder niedrigen Ausgangswert zurück. Das ist ein Problem für Sicherheitsverantwortliche, die EPSS einsetzen.

So spiegelt EPSS beispielsweise nicht wider, wie Cyberkriminelle vorgehen. Aus Branchenberichten geht hervor, dass sie Schwachstellen ausnutzen, wann und wo auch immer sie gefunden werden – sogar alte Schwachstellen. Mit anderen Worten: Angreifende verzichten nicht auf eine Schwachstelle, weil sie nicht aktuell ist. Die alleinige Nutzung aktueller EPSS-Werte kann riskant sein – selbst bei kürzlich entdeckten Schwachstellen. Verteidigende können dem begegnen, indem sie in ihrer Risikokalkulation immer den höchsten EPSS-Wert zugrunde legen: Aber eine weitere Schwachstelle bleibt bei den rohen EPSS-Werten bestehen: Statistisch gesehen sollte eine Ansammlung von mäßigen Wahrscheinlichkeitswerten auch eine hohe Wahrscheinlichkeit für das Eintreten eines Ereignisses bedeuten.

LEV behebt diese letzte Einschränkung durch die Berechnung einer kumulativen Wahrscheinlichkeit unter Verwendung der historischen EPSS-Daten der einzelnen CVEs. LEV wendet den üblichen produktbasierten Ansatz zur Berechnung der kumulativen Wahrscheinlichkeit des Eintretens mindestens eines Ereignisses unter mehreren unabhängigen Ereignissen an. Infolgedessen gelten CVEs, die selbst bei maximalem EPSS keine Warnungen ausgelöst haben, unter LEV nun als hochriskant.

Mathematische Variablen und Symbolreferenz

Diese Übersicht erklärt alle Variablen und mathematischen Symbole, die in den Gleichungen verwendet werden.

Variablen-Referenz

Symbol / Funktion

Beschreibung

Verwendet in

v

Eine Schwachstelle (z. B. ein CVE)

Alle Gleichungen

d

Ein Datum ohne Zeitkomponente

Alle Gleichungen

d0

Erstes Datum mit EPSS-Daten für v

Alle Gleichungen

dn

Das Analysedatum (normalerweise heute)

LEV, erwartete Ausnutzung, kombinierte Wahrscheinlichkeit

dkev

Datum der letzten Aktualisierung der KEV-Liste (Known Exploited Vulnerabilities)

KEV Ausgenutzt

LEV (v,d0,dn)

Kumulative Wahrscheinlichkeit der Ausnutzung von Schwachstelle v im Zeitraum d0 bis dn

Alle Gleichungen

EPSS (v,dn)

EPSS-Punktzahl zum Zeitpunkt dn

Komposit-Wahrscheinlichkeit

KEV (v,dn)

1.0 wenn v in KEV-Liste am Datum dn, sonst 0

Komposit-Wahrscheinlichkeit

scopedcves

CVEs mit d(0) ≤ dkev für KEV-Verfolgung

KEV Ausgenutzt

cves

CVEs im Geltungsbereich mit d(0) ≤ dn

Erwartete Ausnutzung

Symbol-Referenz

Symbol

Bezeichnung

Bedeutung

Universeller Quantor

„Für alle“ / „Für jeden“ ähnlich wie eine Programmierschleife

Π

Großes Pi

Eine „Produktnotation“ für wiederholte Multiplikation über eine Folge, ähnlich wie ∑ für wiederholte Addition steht.

Großes Sigma

Ein Summenzeichen für die wiederholte Addition über eine Sequenz.

Element von

„Ist ein Element von“ / „gehört zu“. Bezeichnet die Zugehörigkeit zu einer Menge.

Funktionsweise der LEV-Gleichungen

Die LEV-Metrik wird im „Cybersecurity White Paper 41” (CSWP 41) des NIST als eine untere Grenze der Wahrscheinlichkeit beschrieben, dass eine Schwachstelle ausgenutzt wurde. Sie berechnet die kumulative Wahrscheinlichkeit, dass eine Schwachstelle innerhalb eines bestimmten Zeitfensters mindestens einmal ausgenutzt wurde. Es gibt zwei ähnliche Gleichungen, LEV und LEV2. Die erste wurde optimiert, um die CPU-Last zu verringern.

In beiden Gleichungen, LEV und LEV2, steht jeder Term, der mit der Produktnotation Π multipliziert wird, für die Wahrscheinlichkeit, dass in diesem Zeitfenster keine Schwachstelle ausgenutzt wurde. Man erhält die kumulative Wahrscheinlichkeit, dass nie eine Ausnutzung stattgefunden hat. Subtrahiert man das Ergebnis von 1, erhält man die Wahrscheinlichkeit, dass mindestens eine Ausbeutung während des Zeitfensters stattgefunden hat.

Die beiden LEV-Gleichungen werden im Folgenden beschrieben:

Die leistungsoptimierte LEV-Gleichung

LEV verwendet die historischen EPSS-Werte eines CVE, die alle 30 Tage ermittelt werden (epss(vi, di) ), und eine ausgleichende Gewichtung für Beobachtungszeiträume unter 30 Tagen (dn < 30)

Die im NIST CSWP 41 vorgeschlagene LEV-Gleichung

Die hochauflösende LEV2-Gleichung

LEV2 verwendet die gesamte historische EPSS-Zeitreihe, anstatt alle 30 Tage eine Stichprobe der Werte zu nehmen. LEV2 gewichtet die täglichen Werte, indem es diese durch die Dauer des EPSS-Fensters (30 Tage) teilt. LEV2 erhöht die zeitliche Auflösung und führt zu einer zuverlässigeren Bewertung, da kurze Ausbrüche hoher EPSS-Werte nicht wie bei der oben dargestellten LEV-Gleichung übersprungen werden können. Jeder tägliche EPSS-Wert wird mit 1/30 skaliert, um eine einheitliche Risikodichte über den gesamten Datumsbereich zu erhalten.

Die im NIST CSWP 41 vorgeschlagene LEV2-Gleichung

Die ergänzenden Gleichungen

Dieser Abschnitt stellt zusätzliche Gleichungen aus dem LEV-Whitepaper des NIST vor, samt Aufbau und möglichen Anwendungen.

Berechnung eines zusammengesetzten Risiko-Scores

Die im LEV-Whitepaper des NIST beschriebene ergänzende Metrik für die Wahrscheinlichkeit wählt einfach das stärkste verfügbare Signal aus den drei Ausnutzungsindikatoren EPSS, Einbeziehung in den KEV-Katalog der CISA (Cybersecurity and Infrastructure Security Agency) und LEV aus.

Die im NIST CSWP 41 vorgeschlagene Gleichung für die zusammengesetzte Wahrscheinlichkeit, den „Composite Risk Score“

Durch die Auswahl des aussagekräftigsten Signals unterstützt Composite Probability die Priorisierung von Schwachstellen und reduziert blinde Flecken, bei denen ein Signal unvollständig oder veraltet sein kann. Dies ist besonders wertvoll für die Priorisierung von Abhilfemaßnahmen in großen Unternehmens-Programmen zur Verwaltung von Schwachstellen, bei denen die Entscheidung, was zuerst behoben werden soll, eine kritische Herausforderung darstellt.

Schätzung der Gesamtzahl der ausgenutzten CVEs

Das Whitepaper des NIST schlägt auch eine Methode vor, um die Gesamtzahl der ausgenutzten CVEs während eines bestimmten Zeitfensters zu schätzen und wie man den Umfang eines Verzeichnisses bekannter ausgenutzter Schwachstellen abschätzen kann. 

Die „Expected Exploited“-Berechnung

Die „Expected Exploited“-Metrik ist eine Schätzung der Anzahl der ausgenutzten CVEs innerhalb eines bestimmten Zeitfensters durch einfache Summierung aller LEV-Wahrscheinlichkeiten aus einem Satz von skalierten Schwachstellen. Die Gleichung „Expected Exploited“ wendet einfach die Summe (∑) aller LEV-Wahrscheinlichkeiten für einen Satz von CVEs an, um die Gesamtzahl der wahrscheinlichen Ereignisse zu schätzen. Obwohl sie im NIST CSWP 41 als untere (konservative) Schätzung beschrieben wird, ist es methodisch unüblich, diese einfache Technik als untere Grenze zu betrachten. In der Wahrscheinlichkeitstheorie ist es ein grundlegendes Prinzip, dass die erwartete Anzahl von Ereignissen gleich der Summe der einzelnen Ereigniswahrscheinlichkeiten ist.

Die im NIST CSWP 41 vorgeschlagene „Expected Exploited“-Gleichung

Die KEV Exploited-Berechnung

Die KEV Exploited-Metrik schätzt, wie viele Schwachstellen in einem KEV-Katalog wie dem CISA KEV fehlen. Die Quantifizierung der Lücke zwischen „Expected Exploited“ und „KEV Exploited“ gibt Aufschluss über die potenzielle Untererfassung einer KEV-Liste. Die Gleichung basiert wie die „Expected Exploited“-Berechnung auf der Summierung aller Wahrscheinlichkeiten.

Die in NIST CSWP 41 vorgeschlagene KEV Exploited-Gleichung

Anwendungsbeispiele von LEV

Folgende Beispiele zeigen, wie LEV Schwachstellenmanagement-Programme unterstützen kann. Die ergänzende Composite Probability-Gleichung eignet sich am besten, um den Beitrag von LEV zu einer umfassenderen CVE-Risikoanalyse zu veranschaulichen. Daher verwenden alle nachfolgenden statistischen Beobachtungen die zusammengesetzte Wahrscheinlichkeit, sofern nicht anders angegeben.

Die geschätzte Gesamtzahl der ausgenutzten CVEs

Wenn man alle CVEs seit etwa 1980 (273.979) betrachtet, zeigt die LEV-Metrik „Expected Exploited“, dass 14,6 % aller CVEs (39.925) wahrscheinlich real ausgenutzt wurden. Das impliziert, dass die überwiegende Mehrheit der Ausnutzungsaktivitäten in keiner bekannten KEV-Liste erfasst ist (z. B. enthielt CISA KEV zum Zeitpunkt der Berechnung 1.228). Allerdings berücksichtigt Expected Exploited nicht, wie viele einzelne CVEs bei verschiedenen EPSS-Schwellenwerten aufgedeckt werden können.

Die Anzahl der aufgedeckten Hochrisiko-CVEs

Um den Einfluss von LEV auf die Risikobewertung und Priorisierung in Organisationen zu beurteilen, ist es sinnvoll, die Anzahl der dadurch identifizierten Hochrisiko-CVEs zu betrachten. Das folgende Diagramm zeigt, wie viele CVEs in einer Risikoanalyse bei verschiedenen Schwellenwerten über 50 Prozent der zusammengesetzten Wahrscheinlichkeit sichtbar werden würden.

Die Anzahl der CVEs, die unter Verwendung der Metrik Composite Probability (Zusammengesetzte Wahrscheinlichkeit) auf verschiedenen Wahrscheinlichkeitsstufen auf ein hohes Risiko heraufgesetzt wurden

Visualisierung der Risikomigration mit Composite Probability

Das Sankey-Diagramm vergleicht, wie viele CVEs sich in jeder Risikostufe befinden, wenn die maximale EPSS (links) mit der zusammengesetzten Wahrscheinlichkeit von LEV (rechts) verglichen wird. Da die zusammengesetzte Wahrscheinlichkeit verwendet wird, wandern CVEs in der Regel nicht in niedrigere Risikostufen. Das Diagramm zeigt eine signifikante Migration vom niedrigsten Risikobereich zu höheren Bereichen und einen Anstieg für alle anderen Gruppen, wenn die Composite Probability zur Risikoabschätzung verwendet wird.

Sankey-Diagramm, das die Migration von CVEs zwischen Risikobereichen bei der Verwendung von EPSS und der LEV-Metrik „Composite Probability“ zeigt

Einschränkungen und Kritikpunkte an LEV

Die LEV-Metrik bietet zwar wertvolle Einblicke, dennoch sollten ihre Annahmen und potenziellen Schwächen kritisch betrachtet werden:

  • Das LEV-Whitepaper enthält keine empirische Validierung oder Vergleiche mit anderen statistischen Modellen. Ein frequentistischer Ansatz mit produktbasierter Wahrscheinlichkeit ist jedoch eine bewährte Methode zur Berechnung der kumulativen Wahrscheinlichkeit für eine Reihe unabhängiger Ereignisse.
  • LEV wird als eine untere Wahrscheinlichkeitsgrenze beschrieben. Es fehlen jedoch akademische Belege dafür, dass die im NIST CSWP 41 beschriebenen mathematischen Modelle tatsächlich konservative Schätzungen von Untergrenzen darstellen.
  • LEV ist an sich kein undurchsichtiges Vorhersagesystem, aber es basiert auf EPSS, das kein vollständig öffentliches Modell ist. LEV behebt zwar einige potenzielle Schwachstellen, ist aber von EPSS abhängig. In dem Maße, wie EPSS verbessert wird, wird auch LEV von diesen Verbesserungen profitieren. Zum Beispiel hat EPSS v4 Malware-Aktivitäten und Endpunkt-Erkennungen zu seiner „Grundwahrheit“ der realen Ausnutzung hinzugefügt. Dies reduziert die frühere Verzerrung zugunsten von netzwerkbasierten Schwachstellen.
  • Sicherheitsverantwortliche sollten sich bei der Priorisierung von Schwachstellen nicht zu sehr auf LEV, EPSS oder CVSS verlassen. Zwar sind Beweise für eine aktive Ausnutzung das stärkste Risikosignal, doch kommen diese Beweise oft erst im Nachhinein – zu spät um eine rechtzeitige Reaktion zu ermöglichen.

Zusammenfassung

LEV bietet einige Verbesserungen bei der Schwachstellen-Priorisierung, indem historische EPSS-Signale zu einer kumulativen Ausnutzungswahrscheinlichkeit zusammengefasst werden. Dieser Ansatz erhöht die Sichtbarkeit von CVEs mit einer historischen Dauer und moderaten EPSS-Werten. Die vielleicht nützlichste Kennzahl ist die vorgeschlagene zusammengesetzte Wahrscheinlichkeit, die das stärkste Signal aus LEV, EPSS und dem CISA KEV-Ausnutzungsstatus auswählt.

Die Greenbone AG engagiert sich seit Jahren konsequent für eine unabhängige und resiliente Versorgungskette bei der Bereitstellung von Schwachstellendaten. Vor dem Hintergrund aktueller Diskussionen zur Finanzierung und Zukunftsfähigkeit des CVE-Programms der US-amerikanischen Organisation MITRE möchten wir Sie über unsere Maßnahmen zur Sicherstellung der kontinuierlichen Versorgung mit wichtigen Informationen über Schwachstellen in IT-Systemen informieren.

Das CVE-System bildet seit 1999 die zentrale Grundlage zur eindeutigen Identifikation und Klassifikation von Sicherheitslücken in der IT. Die Finanzierung der zentralen CVE-Datenbank ist derzeit noch bis April 2026 durch die US-Regierung gesichert. Vor diesem Hintergrund hat Greenbone frühzeitig strukturelle Maßnahmen ergriffen, um von einzelnen Datenquellen unabhängiger zu werden.

Mit unserer Marke OPENVAS zählt Greenbone zu den global führenden Open-Source-Anbietern im IT-Security Ökosystem. Wir leisten einen aktiven Beitrag zur Entwicklung nachhaltiger, dezentraler Infrastrukturen für die Bereitstellung von Schwachstelleninformationen – und setzen heute bereits auf zukunftsfähige Konzepte, die unsere Kunden wirksam vor Sicherheitsrisiken schützen.

Unser souveräner Datenansatz umfasst unter anderem folgende Maßnahmen:

  • Breite Quellendiversifikation: Unsere Systeme und unsere Security-Researcher überwachen eine Vielzahl internationaler Informationsquellen, um unabhängig vom offiziellen CVE-Prozess schnell auf neue Bedrohungen reagieren zu können – auch dann, wenn es noch keinen offiziellen CVE-Eintrag gibt.
  • Integration alternativer Datenbanken: Wir binden unabhängige Schwachstellenkataloge wie die Europäische Schwachstellendatenbank (EUVD) in unsere Systeme ein, um eine stabile und geografisch diversifizierte Informationsgrundlage zu schaffen.
  • Förderung offener Standards: Wir unterstützen aktiv die Verbreitung des CSAF-Standards (Common Security Advisory Framework), der eine dezentrale und föderierte Verteilung von Schwachstelleninformationen ermöglicht.

Durch diese Maßnahmen stellen wir sicher, dass unsere Kunden auch bei Veränderungen im internationalen Datenökosystem uneingeschränkt Zugang zu aktuellen Schwachstelleninformationen behalten. So bleiben Ihre IT-Systeme auch künftig umfassend geschützt.

Greenbone steht für eine unabhängige, souveräne und zukunftssichere Versorgung mit wichtigen Informationen über Schwachstellen in IT-Systemen – auch in einem sich wandelnden geopolitischen Umfeld.

Trotz des Ausfalls der „National Vulnerability Database” (NVD) des amerikanischen „National Institute of Standards and Technology“ (NIST) ist die Greenbone-Engine zur Erkennung von Schwachstellen weiterhin voll funktionsfähig. Sie bietet zuverlässige Schwachstellen-Scans, ohne auf fehlende CVE-Anreicherungsdaten angewiesen zu sein.

Seit 1999 stellt die MITRE Corporation mit Common Vulnerabilities and Exposures (CVE) kostenlose öffentliche Informationen über Schwachstellen zur Verfügung, indem sie Informationen über Software-Schwachstellen veröffentlicht und verwaltet. Das NIST hat diese CVE-Berichte seit 2005 fleißig erweitert und mit Kontext angereichert, um die Bewertung von Cyberrisiken zu verbessern. Anfang 2024 wurde die Cybersecurity-Gemeinschaft überrascht, als die NIST-NVD zum Stillstand kam. Etwa ein Jahr später war der Ausfall noch immer nicht vollständig behoben [1][2]. Bei einer jährlich steigenden Zahl von CVE-Einreichungen haben die Schwierigkeiten des NIST dazu geführt, dass ein großer Prozentsatz ohne Kontext blieb, wie z. B. bei der Bewertung des Schweregrads (CVSS), den Listen betroffener Produkte (CPE) und den Einstufungen von Schwachstellen (CWE).

Die jüngsten von der Trump-Administration angestoßenen politischen Veränderungen haben die Unsicherheit über die Zukunft des Austauschs von Schwachstelleninformationen und der vielen Sicherheitsanbieter, die davon abhängig sind, vergrößert. Der Haushaltsplan für das Geschäftsjahr der CISA enthält bemerkenswerte Kürzungen in bestimmten Bereichen, wie z. B. 49,8 Millionen Dollar weniger für Beschaffung, Bau und Verbesserungen sowie 4,7 Millionen Dollar weniger für Forschung und Entwicklung. Als Reaktion auf die Finanzierungsprobleme hat die CISA Maßnahmen zur Kürzung der Ausgaben ergriffen, darunter Anpassungen bei Verträgen und Beschaffungsstrategien.

Um es klar zu sagen: Das CVE-Programm ist noch nicht ausgefallen. Am 16. April erließ die CISA in letzter Minute eine Anweisung, ihren Vertrag mit MITRE zu verlängern, um den Betrieb des CVE-Programms für weitere elf Monate sicherzustellen, nur wenige Stunden bevor der Vertrag auslaufen sollte. Niemand kann jedoch vorhersagen, wie sich die zukünftigen Ereignisse entwickeln werden. Die potenziellen Auswirkungen auf den Austausch von Informationen sind alarmierend und deuten vielleicht auf eine neue Dimension von „kaltem Cyberkrieg“ hin.

Dieser Artikel enthält einen kurzen Überblick über die Funktionsweise des CVE-Programms und darüber, wie die Erkennungsfunktionen von Greenbone auch während des NIST NVD-Ausfalls aufrechterhalten werden.

Ein Überblick über den Betrieb des CVE-Programms

Die MITRE Corporation ist eine gemeinnützige Organisation, die die Aufgabe hat, die innere Sicherheit der USA an mehreren Fronten zu unterstützen, einschließlich der Verteidigungsforschung zum Schutz kritischer Infrastrukturen und der Cybersicherheit. MITRE betreibt das CVE-Programm, fungiert als primäre CNA (CVE Numbering Authority) und unterhält die zentrale Infrastruktur für die CVE-ID-Zuweisung, die Veröffentlichung von Datensätzen, die Kommunikationsabläufe zwischen allen CNAs und ADPs (Authorized Data Publishers) sowie die Programmverwaltung. MITRE stellt der Öffentlichkeit CVE-Daten über die Website CVE.org und das GitHub-Repository cvelistV5 zur Verfügung, das alle CVE-Datensätze im strukturierten JSON-Format enthält. Das Ergebnis ist eine hocheffiziente, standardisierte Berichterstattung zu Schwachstellen und ein nahtloser Datenaustausch im gesamten Cybersicherheitsökosystem.

Nachdem eine Schwachstellen-Beschreibung von einem CNA an MITRE übermittelt wurde, hat das NIST in der Vergangenheit immer etwas hinzugefügt:

  • CVSS (Common Vulnerability Scoring System): Ein Schweregrad und ein detaillierter Vektorstring, der den Risikokontext für Angriffskomplexität (AC), die Auswirkungen auf Vertraulichkeit (C), Integrität (I) und Verfügbarkeit (A) sowie andere Faktoren enthält.
  • CPE (Common Platform Enumeration): Eine speziell formatierte Zeichenfolge, die zur Identifizierung betroffener Produkte dient, indem sie den Produktnamen, den Hersteller, die Versionen und andere architektonische Spezifikationen weitergibt.
  • CWE (Common Weakness Enumeration): Eine Ursachenklassifizierung nach der Art des betreffenden Softwarefehlers.

CVSS ermöglicht es Unternehmen, den Grad des Risikos einer bestimmten Schwachstelle leichter zu bestimmen und dementsprechend strategische Abhilfemaßnahmen zu ergreifen. Da die ersten CVE-Berichte nur eine nicht standardisierte Deklaration des betroffenen Produkts erfordern, ermöglicht es die Ergänzung von CPE durch NIST den Plattformen für das Schwachstellenmanagement, den CPE-Abgleich als schnelle, wenn auch etwas unzuverlässige Methode durchzuführen, um festzustellen, ob eine CVE in der Infrastruktur eines Unternehmens existiert oder nicht.

Einen detaillierteren Einblick in die Funktionsweise des Verfahrens zur Offenlegung von Schwachstellen und wie CSAF 2.0 eine dezentralisierte Alternative zum CVE-Programm von MITRE bietet, finden Sie in unserem Artikel: Wie CSAF 2.0 automatisiertes Schwachstellenmanagement vorantreibt. Als Nächstes wollen wir uns den NIST NVD-Ausfall genauer ansehen und verstehen, was Greenbones Erkennung gegen diesen Ausfall widerstandsfähig macht.

Der NIST-NVD-Ausfall: Was ist passiert?

Seit dem 12. Februar 2024 hat die NVD die Anreicherung von CVEs mit wichtigen Metadaten wie CVSS-, CPE- und CWE-Produktkennungen drastisch reduziert. Das Problem wurde zuerst vom VP of Security von Anchore erkannt. Im Mai 2024 waren etwa 93 % der nach dem 12. Februar hinzugefügten CVEs nicht angereichert. Im September 2024 hatte das NIST seine selbst gesetzte Frist nicht eingehalten; 72,4 % der CVEs und 46,7 % der neu hinzugefügten KEVs (Known Exploited Vulnerabilities) der CISA waren immer noch nicht angereichert [3].

Die Verlangsamung des NVD-Anreicherungsprozesses hatte erhebliche Auswirkungen auf die Cybersecurity-Gemeinschaft, nicht nur, weil angereicherte Daten für Verteidiger entscheidend sind, um Bedrohungen effektiv zu priorisieren, sondern auch, weil einige Schwachstellen-Scanner auf diese angereicherten Daten angewiesen sind, um ihre Erkennungstechniken einzusetzen.

Als Verteidiger der Cybersicherheit lohnt es sich zu fragen: War Greenbone vom Ausfall des NIST NVD betroffen? Die kurze Antwort lautet: Nein. Lesen Sie weiter, um herauszufinden, warum die Erkennungsfähigkeiten von Greenbone gegen den NIST NVD-Ausfall resistent sind.

Greenbone-Erkennungsrate trotz NVD-Ausfall hoch

Ohne angereicherte CVE-Daten werden einige Lösungen für das Schwachstellenmanagement unwirksam, da sie auf den CPE-Abgleich angewiesen sind, um festzustellen, ob eine Schwachstelle in der Infrastruktur eines Unternehmens vorhanden ist.  Greenbone ist jedoch gegen den Ausfall der NIST NVD gewappnet, da unsere Produkte nicht vom CPE-Abgleich abhängen. Die OPENVAS-Schwachstellentests von Greenbone können auf der Grundlage von nicht angereicherten CVE-Beschreibungen erstellt werden. Greenbone erkennt sogar bekannte Schwachstellen und Fehlkonfigurationen, für die es nicht einmal CVEs gibt, wie z. B. CIS-Compliance Benchmarks [4][5].

Für die Erstellung von Schwachstellentests (VT) beschäftigt Greenbone ein engagiertes Team von Software-Ingenieuren, die die zugrunde liegenden technischen Aspekte von Schwachstellen identifizieren. Greenbone verfügt über eine CVE-Scanner-Funktion, die einen herkömmlichen CPE-Abgleich ermöglicht. Im Gegensatz zu Lösungen, die sich ausschließlich auf die CPE-Daten der NIST NVD stützen, um Schwachstellen zu identifizieren, setzt Greenbone jedoch Erkennungstechniken ein, die weit über den grundlegenden CPE-Abgleich hinausgehen. Daher bleiben die Fähigkeiten von Greenbone zur Erkennung von Schwachstellen auch angesichts von Herausforderungen wie dem jüngsten Ausfall der NIST NVD robust.

Um eine hoch belastbare, branchenführende Schwachstellen-Erkennung  zu erreichen, interagiert die Greenbone-Komponente OPENVAS Scanner aktiv mit exponierten Netzwerkdiensten, um eine detaillierte Karte der Angriffsfläche eines Zielnetzwerks zu erstellen. Dies beinhaltet die Identifizierung von Diensten, die über Netzwerkverbindungen zugänglich sind, die Untersuchung dieser Dienste zur Ermittlung von Produkten und die Ausführung individueller Schwachstellentests (VT) für jede CVE- oder Nicht-CVE-Sicherheitslücke, um aktiv zu überprüfen, ob diese vorhanden sind. Der Enterprise Vulnerability Feed von Greenbone enthält über 180.000 VTs, die täglich aktualisiert werden, um die neuesten veröffentlichten Schwachstellen zu identifizieren und eine schnelle Erkennung der neuesten Bedrohungen zu gewährleisten.

Zusätzlich zu seinen aktiven Scan-Funktionen unterstützt Greenbone die agentenlose Datenerfassung über authentifizierte Scans. Greenbone sammelt detaillierte Informationen von den Endpunkten und bewertet die installierten Softwarepakete anhand der veröffentlichten CVEs. Diese Methode ermöglicht eine präzise Erkennung von Schwachstellen, ohne auf die angereicherten CPE-Daten der NVD angewiesen zu sein.

Wichtige Erkenntnisse:

  • Unabhängigkeit von angereicherten CVE-Daten: Die Schwachstellenerkennung von Greenbone ist nicht auf angereicherte CVE-Daten angewiesen, die von der NVD des NIST bereitgestellt werden, wodurch eine unterbrechungsfreie Leistung bei Ausfällen gewährleistet ist. Anhand einer grundlegenden Beschreibung einer Schwachstelle können die Ingenieure von Greenbone ein Erkennungsmodul entwickeln.
  • Erkennung über CPE-Abgleich hinaus: Obwohl Greenbone eine CVE-Scanner-Funktion für den CPE-Abgleich enthält, gehen die Erkennungsfähigkeiten weit über diesen grundlegenden Ansatz hinaus und nutzen mehrere Methoden, die aktiv mit Scan-Zielen interagieren.
  • Angriffsflächen-Mapping: Der OPENVAS-Scanner interagiert aktiv mit exponierten Diensten, um die Angriffsfläche des Netzwerks abzubilden und alle im Netzwerk erreichbaren Dienste zu identifizieren. Greenbone führt auch authentifizierte Scans durch, um Daten direkt von den Interna der Endpunkte zu sammeln. Diese Informationen werden verarbeitet, um verwundbare Pakete zu identifizieren. Angereicherte CVE-Daten wie CPE sind nicht erforderlich.
  • Widerstandsfähigkeit bei Ausfällen der NVD-Anreicherung: Die Erkennungsmethoden von Greenbone bleiben auch ohne NVD-Anreicherung wirksam, da sie die von CNAs bereitgestellten CVE-Beschreibungen nutzen, um genaue aktive Prüfungen und versionsbasierte Schwachstellenbewertungen zu erstellen.

Greenbones Ansatz: praktisch, wirksam und widerstandsfähig

Greenbone ist ein Beispiel für den Gold-Standard in Bezug auf Praktikabilität, Effektivität und Widerstandsfähigkeit und setzt damit einen Maßstab, den IT-Sicherheitsteams anstreben sollten. Durch den Einsatz von aktivem Netzwerk-Mapping, authentifizierten Scans und aktiver Interaktion mit der Zielinfrastruktur gewährleistet Greenbone zuverlässige, belastbare Erkennungsfunktionen in unterschiedlichen Umgebungen.

Dieser höhere Standard ermöglicht es Unternehmen, Schwachstellen selbst in komplexen und dynamischen Bedrohungslandschaften sicher zu erkennen. Auch ohne NVD-Anreicherung bleiben die Erkennungsmethoden von Greenbone effektiv. Mit nur einer allgemeinen Beschreibung können die VT-Ingenieure von Greenbone genaue aktive Prüfungen und produktversionsbasierte Schwachstellenbewertungen entwickeln.

Durch einen grundlegend robusten Ansatz zur Erkennung von Schwachstellen gewährleistet Greenbone ein zuverlässiges Schwachstellenmanagement und hebt sich damit von anderen Anbietern im Bereich der Cybersicherheit ab.

Alternativen zu NVD / NIST / MITRE

Die MITRE-Problematik ist ein Weckruf für die digitale Souveränität, und die EU hat bereits (und schnell) reagiert. Eine lang erwartete Alternative, die EuVD der ENISA, der Agentur der Europäischen Union für Cybersicherheit, ist nun verfügbar und wird in einem unserer nächsten Blogbeiträge vorgestellt.

Wem sollten Sie vertrauen, wenn es darum geht, Ihre Organisation vor digitalen Bedrohungen zu schützen? Realität ist, dass eine hoch belastbare IT-Sicherheit aus einem Netzwerk starker Partnerschaften, tiefgreifender Verteidigungsmaßnahmen, mehrstufiger Sicherheitskontrollen und regelmäßiger Audits besteht. Diese Maßnahmen müssen kontinuierlich überwacht, gemessen und verbessert werden. Schwachstellenmanagement war zwar schon immer eine zentrale Instanz für die Sicherheit, ist aber dennoch ein sich schnell veränderndes Instrument. Im Jahr 2025 hat die kontinuierliche und priorisierte Eindämmung von Bedrohungen einen großen Einfluss auf die Schutzwirkung, da die Zeit immer kürzer wird, in der eine Sicherheitslücke von Angreifern ausgenutzt wird.

Im Threat Report vom März heben wir die Bedeutung des Schwachstellenmanagements und der branchenführenden Erkennungsrate von Greenbone hervor, indem wir die neuesten kritischen Bedrohungen untersuchen. Aber diese neuen Bedrohungen sind nur die Spitze des Eisbergs. Im März 2025 hat Greenbone 5.283 neue Schwachstellentests zum Enterprise Feed hinzugefügt. Sehen wir uns einige der wichtigen Erkenntnisse aus einer hochaktiven Bedrohungslandschaft an!

Einbruch ins US-Finanzministerium: Wie kam es dazu?

Ende Dezember 2024 gab das US-Finanzministerium bekannt, dass staatlich unterstützte chinesische Hacker sein Netzwerk angegriffen hatten. Daraufhin verhängte es Anfang Januar 2025 Sanktionen. Bei forensischen Untersuchungen stieß man auf einen gestohlenen BeyondTrust-API-Schlüssel als Ursache. Der Anbieter hat bestätigt, dass 17 weitere Kunden von diesem Fehler betroffen waren. Eingehendere Untersuchungen ergaben, dass der API-Schlüssel unter Ausnutzung einer Sicherheitslücke in einer Funktion zur Umgehung nicht vertrauenswürdiger Eingaben innerhalb von PostgreSQL gestohlen wurde.

Wenn eine ungültige zwei Byte lange UTF-8-Zeichenfolge an eine anfällige PostgreSQL-Funktion übermittelt wird, wird nur das erste Byte umgangen, sodass ein einfaches Anführungszeichen ohne Bereinigung durchgelassen wird, was zum Auslösen eines SQL-Injection-Angriffs [CWE-89] genutzt werden kann. Die ausnutzbaren Funktionen sind PQescapeLiteral(), PQescapeIdentifier(), PQescapeString() und PQescapeStringConn(). Alle Versionen von PostgreSQL vor 17.3, 16.7, 15.11, 14.16 und 13.19 sind betroffen, ebenso wie zahlreiche Produkte, die von diesen Funktionen abhängen.

CVE-2024-12356, (CVSS 9.8) und CVE-2024-12686, (CVSS 7.2) wurden für BeyondTrust Privileged Remote Access (PRA) und Remote Support (RS) herausgegeben, und CVE-2025-1094 (CVSS 8.1) befasst sich mit dem Fehler in PostgreSQL. Das Problem ist Gegenstand mehrerer nationaler CERT-Hinweise, darunter der deutsche BSI Cert-Bund (WID-SEC-2024-3726) und das kanadische Centre for Cybersecurity (AV25-084). Die Schwachstelle wurde in die Liste der bekannten ausgenutzten Schwachstellen (KEV) der CISA (Cybersecurity and Infrastructure Security Agency) aufgenommen, und es ist ein Metasploit-Modul verfügbar, das anfällige BeyondTrust-Produkte ausnutzt – was das Risiko noch erhöht. Greenbone kann die oben genannten CVEs (Common Vulnerabilities and Exposures) sowohl in BeyondTrust-Produkten als auch in PostgreSQL-Instanzen erkennen, die für CVE-2025-1094 anfällig sind.

Advanced: 3,1 Millionen Pfund Geldstrafe wegen fehlender technischer Kontrollen

Diesen Monat verhängte das britische Information Commissioner’s Office (ICO) eine Geldstrafe in Höhe von 3,07 Millionen Britische Pfund gegen die Advanced Computer Software Group Ltd. gemäß der britischen Datenschutz-Grundverordnung (GDPR) wegen Sicherheitsmängeln. Der Fall ist ein Beispiel dafür, wie der durch einen Ransomware-Angriff verursachte finanzielle Schaden durch behördliche Geldbußen noch weiter verschärft werden kann. Der ursprünglich vorgeschlagene Betrag war mit 6,09 Millionen Britische Pfund sogar noch höher. Da das Opfer jedoch nach dem Vorfall mit dem NCSC (National Cyber Security Centre), der NCA (National Crime Agency) und dem NHS (National Health Service) kooperierte, wurde eine freiwillige Einigung in Höhe von 3.076.320 Pfund genehmigt. Die Betriebskosten und Erpressungszahlungen wurden zwar nicht öffentlich bekannt gegeben, dürften aber die Gesamtkosten des Vorfalls um weitere 10 bis 20 Millionen Pfund erhöhen.

Advanced ist ein bedeutender IT- und Softwareanbieter für Gesundheitsorganisationen, darunter auch der NHS. Im August 2022 wurde Advanced kompromittiert. Angreifer verschafften sich Zugang zu seiner Tochtergesellschaft für Gesundheit und Pflege, was zu einem schweren Ransomware-Vorfall führte. Durch den Verstoß wurden kritische Dienste wie NHS 111 unterbrochen und das Gesundheitspersonal daran gehindert, auf personenbezogene Daten von 79.404 Personen zuzugreifen, darunter auch sensible Pflegeinformationen.

Das ICO kam zu dem Schluss, dass Advanced zum Zeitpunkt des Vorfalls über eine unvollständige MFA-Abdeckung verfügte, keine umfassenden Schwachstellen-Scans durchführte und über mangelhafte Patch-Management-Praktiken verfügte – Faktoren, die zusammengenommen ein Versäumnis bei der Umsetzung angemessener technischer und organisatorischer Maßnahmen darstellten. Organisationen, die sensible Daten verarbeiten, müssen Sicherheitskontrollen als nicht verhandelbar betrachten. Unzureichendes Patch-Management ist nach wie vor eine der am häufigsten ausgenutzten Sicherheitslücken in modernen Angriffsketten.

Doppelte Gefahr: Die kritische Rolle von Backups beim Schutz vor Ransomware

Backups sind die letzte Verteidigungslinie einer Organisation gegen Ransomware, und die meisten hochentwickelten APT-Akteure (Advanced Persistent Threat) sind dafür bekannt, dass sie die Backups ihrer Opfer ins Visier nehmen. Sind die Backups kompromittiert, ist es wahrscheinlicher, dass Lösegeldforderungen gestellt werden. Im Jahr 2025 könnte dies Verluste in Höhe von mehreren Millionen Dollar bedeuten. Im März 2025 wurden zwei neue massive Bedrohungen für Backup-Dienste aufgedeckt: CVE-2025-23120, eine neue kritische Sicherheitslücke in Veeam, wurde bekannt, und es wurden Kampagnen beobachtet, die auf CVE-2024-48248 in NAKIVO Backup & Replication abzielten. Betroffene Systeme sollten daher dringend identifiziert und gepatcht werden.

Im Oktober 2024 warnte unser Threat Report vor einer weiteren Schwachstelle in Veeam (CVE-2024-40711), die für Ransomware-Angriffe ausgenutzt wird. Insgesamt ist es für CVEs in Veeam Backup and Replication sehr wahrscheinlich, aktiv für PoC-Exploits (Proof of Concept) und Ransomware-Angriffe verwendet zu werden. Hier sind die Details zu beiden neu auftretenden Bedrohungen:

  • CVE-2024-48248 (CVSS 8.6): Versionen von NAKIVO Backup & Replication vor 11.0.0.88174 ermöglichen nicht autorisierte Remote Code Execution (RCE) über eine Funktion namens getImageByPath, die das Lesen von Dateien remote ermöglicht. Dies schließt Datenbankdateien ein, die Klartext-Anmeldeinformationen für jedes System enthalten, mit dem NAKIVO eine Verbindung herstellt und es sichert. Eine vollständige technische Beschreibung und ein Proof of Concept sind verfügbar, weshalb diese Schwachstelle nun als aktiv ausgenutzt verfolgt wird.
  • CVE-2025-23120 (CVSS 9.9): Angreifer mit Domain User Access können die Deserialisierung von manipulierten Daten via .NET-Remoting auslösen. Veeam versucht, gefährliche Typen über eine Blacklist einzuschränken, aber Forscher haben schon ausnutzbare Klassen entdeckt, die nicht auf der Liste stehen, etwa xmlFrameworkDs und BackupSummary. Diese erweitern die DataSet-Klasse von .NET – ein bekannter RCE-Vektor – und ermöglichen die Ausführung von beliebigem Code als SYSTEM auf dem Backup-Server. Der Fehler ist Gegenstand nationaler CERT-Warnmeldungen weltweit, darunter HK, CERT.be, and CERT-In. Veeam empfiehlt ein Upgrade auf Version 12.3.1, um die Schwachstelle zu beheben. 

Greenbone kann anfällige NAKIVO- und Veeam-Instanzen erkennen. Unser Enterprise Feed verfügt über eine aktive Prüfung und Versionsprüfung für CVE-2024-48248 in NAKIVO Backup & Replication sowie über einen Remote-Versions-Check für den Softwarefehler in Veeam.

IngressNightmare: Unauthentifizierte Übernahme in 43 % der Kubernetes-Cluster

Kubernetes ist das weltweit beliebteste Tool zur Container-Orchestrierung in Unternehmen. Seine Ingress-Funktion ist eine Netzwerkkomponente, die den externen Zugriff auf Dienste innerhalb eines Clusters verwaltet, in der Regel HTTP- und HTTPS-Traffic. Eine Schwachstelle namens IngressNightmare hat schätzungsweise 43 % der Kubernetes-Cluster einem nicht authentifizierten Fernzugriff ausgesetzt – annähernd 6.500 Cluster, darunter auch Fortune-500-Unternehmen. 

Die Ursache sind überzogene Standardberechtigungen [CWE-250] und uneingeschränkter Netzwerkzugang [CWE-284] im Ingress-NGINX-Controller-Tool, das auf dem NGINX Reverse Proxy basiert. IngressNightmare ermöglicht es Angreifern, die vollständige und unbefugte Kontrolle über Workloads, APIs oder sensible Daten in Multi-Tenant- und Produktiv-Clustern zu erlangen. Eine vollständige technische Analyse ist bei den Forschern von Wiz erhältlich, die darauf hinweisen, dass Kubernetes-Admission-Controller standardmäßig ohne Authentifizierung direkt zugänglich sind und Hackern eine attraktive Angriffsfläche bieten.

Der vollständige Angriffsverlauf, um eine beliebige RCE gegen eine betroffene K8-Instanz zu erreichen, erfordert die Ausnutzung von Ingress-NGINX; zunächst CVE-2025-1974 (CVSS 9.8), um eine binäre Datenlast als Anfragetext hochzuladen. Sie sollte größer als 8 KB sein, während ein Content-Length-Header angegeben wird, der größer als die tatsächliche Inhaltsgröße ist. Dadurch wird NGINX veranlasst, den Anfragetext als Datei zu speichern, und der falsche Content-Length-Header bedeutet, dass die Datei nicht gelöscht wird, da der Server auf weitere Daten wartet [CWE-459].

In der zweiten Phase dieses Angriffs müssen CVE-2025-1097, CVE-2025-1098 oder CVE-2025-24514 (CVSS 8.8) ausgenutzt werden. Diese CVEs versagen alle in ähnlicher Weise bei der ordnungsgemäßen Bereinigung von Eingaben [CWE-20], die an Admission Controller übermittelt werden. Ingress-NGINX konvertiert Ingress-Objekte in Konfigurationsdateien und validiert sie mit dem Befehl nginx -t, sodass Angreifer eine begrenzte Anzahl von NGINX-Konfigurationsanweisungen ausführen können. Forscher fanden heraus, dass das Modul ssl_engine so angestoßen werden kann, dass es die in der ersten Phase hochgeladene Binärnutzlast der gemeinsam genutzten Bibliothek lädt. Obwohl die Ausnutzung nicht trivial ist und noch kein öffentlicher PoC-Code existiert, werden erfahrene Bedrohungsakteure die technische Analyse leicht in effektive Exploits umwandeln können.

Das Canadian Centre for Cyber Security hat eine CERT-Empfehlung (AV25-161) für IngressNightmare herausgegeben. Die gepatchten Ingress-NGINX-Versionen 1.12.1 und 1.11.5 sind verfügbar, und Anwender sollten so schnell wie möglich upgraden. Wenn ein Upgrade des Ingress NGINX Controllers nicht sofort möglich ist, können vorübergehende Zwischenlösungen helfen, das Risiko zu verringern. Strenge Netzwerkrichtlinien können den Zugriff auf die Admission Controller eines Clusters einschränken, sodass nur der Kubernetes API Server zugänglich ist. Alternativ kann die Admission Controller-Komponente von Ingress-NGINX vollständig deaktiviert werden.

Greenbone ist in der Lage, IngressNightmare-Schwachstellen mit einem aktiven Test zu erkennen, der das Vorhandensein aller oben genannten CVEs [1][2] überprüft.

CVE-2025-29927: Next.js Framework unter Beschuss

Eine neue Schwachstelle in Next.js, CVE-2025-29927 (CVSS 9.4), wird aufgrund der Beliebtheit des Frameworks und der Einfachheit der Ausnutzung als hohes Risiko eingestuft [1][2]. Das Risiko wird dadurch erhöht, dass Exploit Code als PoC öffentlich verfügbar ist und Forscher von Akamai bereits aktive Scans beobachtet haben, die das Internet nach anfälligen Apps durchsuchen. Mehrere nationale CERTs (Computer Emergency Response Teams) haben Warnmeldungen zu diesem Problem herausgegeben, darunter CERT.NZ, Australian Signals Directorate (ASD), das deutsche BSI Cert-Bund (WID-SEC-2025-062) und das kanadische Centre for Cyber Security (AV25-162).

Next.js ist ein React-Middleware-Framework für die Erstellung von Full-Stack-Webanwendungen. Middleware bezieht sich auf Komponenten, die zwischen zwei oder mehr Systemen sitzen und die Kommunikation und Orchestrierung übernehmen. Bei Webanwendungen wandelt Middleware eingehende HTTP-Anfragen in Antworten um und ist oft auch für die Authentifizierung und Autorisierung verantwortlich. Aufgrund von CVE-2025-29927 können Angreifer die Authentifizierung und Autorisierung der Next.js-Middleware umgehen, indem sie einfach einen schädlichen HTTP-Header setzen.

Wenn die Verwendung von HTTP-Headern für die Verwaltung des internen Prozessablaufs einer Webanwendung eine schlechte Idee zu sein scheint, ist CVE-2025-29927 der Beweis dafür. Da benutzerseitige Header nicht korrekt von internen Headern unterschieden wurden, sollte diese Schwachstelle den Status von eklatanter Fahrlässigkeit erhalten. Angreifer können die Authentifizierung umgehen, indem sie einfach den Header „x-middleware-subrequest“ zu einer Anfrage hinzufügen und ihn mit mindestens so vielen Werten wie der MAX_RECURSION_DEPTH (5) überladen. Zum Beispiel:

„x-middleware-subrequest: middleware:middleware:middleware:middleware:middleware“

Der Fehler wurde in den Next.js-Versionen 15.2.3, 14.2.25, 13.5.9 und 12.3.5 behoben. Benutzer sollten den Upgrade-Leitfaden des Anbieters befolgen. Wenn ein Upgrade nicht möglich ist, wird empfohlen, den Header „x-middleware-subrequest“ aus den HTTP-Anfragen zu filtern. Greenbone ist in der Lage, anfällige Instanzen von Next.js mit einer aktiven Überprüfung und einer Versionsprüfung zu erkennen.

Zusammenfassung

Die Bedrohungslandschaft im März 2025 war geprägt von anfälligen und aktiv ausgenutzten Backup-Systemen, unverzeihlich schwacher Authentifizierungslogik, hohen Bußgeldern und zahlreichen anderen kritischen Software-Schwachstellen. Vom Angriff auf das US-Finanzministerium bis hin zu den Folgen der Ransomware Advanced ist das Thema klar: Vertrauen fällt nicht vom Himmel. Die Widerstandsfähigkeit gegenüber Cyberkriminalität muss verdient werden; sie muss durch mehrstufige Sicherheitskontrollen gefestigt und durch Verantwortlichkeit untermauert werden. 

Greenbone spielt weiter eine entscheidende Rolle mit der Bereitstellung zeitnaher Erkennungstests für neu auftretende Bedrohungen und standardisierter Compliance-Audits, die eine Vielzahl von Unternehmensarchitekturen unterstützen. Organisationen, die der Cyberkriminalität immer einen Schritt voraus sein wollen, müssen ihre Infrastruktur proaktiv scannen und Sicherheitslücken schließen, sobald sie auftreten.

Cyber-Bedrohungen entwickeln sich in halsbrecherischem Tempo, aber die grundlegenden Schwachstellen, die Angreifer ausnutzen, bleiben auffallend unverändert. Für das Jahr 2025 haben viele Analysten einen Rückblick auf das Jahr 2024 und einen Ausblick auf das Jahr 2025 veröffentlicht. Die Kosten für Cyberverletzungen steigen, aber insgesamt haben sich die Ursachen für Cyberverletzungen nicht geändert. Phishing [T1566] und das Ausnutzen bekannter Software-Schwachstellen [T1190] stehen weiterhin ganz oben auf der Liste. Eine weitere wichtige Beobachtung ist, dass Angreifer öffentliche Informationen immer schneller als Waffe einsetzen und Enthüllungen von CVEs (Common Vulnerabilities and Exposures) innerhalb von Tagen oder sogar Stunden in brauchbaren Exploit-Code umwandeln. Sobald sie in das Netzwerk eines Opfers eingedrungen sind, führen sie ihre präzisen Absichten in der zweiten Phase ebenfalls schneller aus und setzen Ransomware innerhalb von Minuten ein.

In diesem Threat Report gehen wir kurz auf die aufgedeckten Chats der Ransomware-Gruppe Black Basta ein und werfen einen Blick darauf, wie Greenbone vor deren offengelegten Machenschaften schützt. Wir werden auch einen Bericht von Greynoise über die massenhafte Ausnutzung von Schwachstellen, eine neue, aktiv genutzte Schwachstelle in der Zimbra Collaboration Suite und neue Bedrohungen für Edge-Networking-Geräte unter die Lupe nehmen.

Das Zeitalter der tektonischen Technologien

Wenn Sicherheitskrisen wie Erdbeben sind, dann entspricht das globale Technologie-Ökosystem den zugrunde liegenden tektonischen Platten. Dieses Ökosystem lässt sich am besten als das Paläozoikum der Erdgeschichte darstellen. Die rasanten Innovations- und Wettbewerbskräfte des Markts schieben und zerren an der Struktur der IT-Sicherheit wie die kollidierenden Superkontinente von Pangäa; ständige Erdbeben zwingen die Kontinente zu permanenten Verschiebungen.

Völlig neue Computerparadigmen wie die generative KI und das Quantencomputing schaffen Vorteile und Risiken; Vulkane von Wert und instabilem Boden. Globale Regierungen und Tech-Giganten ringen um den Zugang zu den sensiblen persönlichen Daten der Bürger und erhöhen damit die Schwerkraft. Diese Kämpfe haben erhebliche Auswirkungen auf die Privatsphäre und die Sicherheit und beeinflussen letztendlich die Entwicklung der Gesellschaft. Hier sind einige der wichtigsten Kräfte, die die IT-Sicherheit heute destabilisieren:

  • Sich schnell entwickelnde Technologien treiben die Innovation voran und erzwingen den technischen Wandel.
  • Unternehmen sind zum einen gezwungen, sich zu ändern, da Technologien und Standards an Wert verlieren, und zum anderen sind sie motiviert, sich zu ändern, um am Markt fortzubestehen.
  • Der harte Wettbewerb beschleunigt die Produktentwicklung und die Veröffentlichungszyklen.
  • Strategisch geplante Obsoleszenz hat sich als Geschäftsstrategie zur Erzielung finanzieller Gewinne etabliert.
  • Der weit verbreitete Mangel an Verantwortlichkeit für Softwareanbieter hat dazu geführt, dass Leistung Vorrang vor dem Grundsatz „Security First“ hat.
  • Nationalstaaten setzen Waffentechnologien für Cyber Warfare, Information Warfare und Electronic Warfare ein.

Dank dieser Kräfte finden gut ausgestattete und gut organisierte Cyber-Kriminelle eine praktisch unbegrenzte Anzahl von Sicherheitslücken, die sie ausnutzen können. Das Zeitalter des Paläozoikums dauerte 300 Millionen Jahre. Hoffentlich müssen wir nicht so lange warten, bis die Produkthersteller Verantwortung zeigen und sichere Konstruktionsprinzipien anwenden [1][2][3], um sogenannte „unverzeihliche“ Schwachstellen durch Fahrlässigkeit zu verhindern [4][5]. Unternehmen müssen daher technische Flexibilität und effiziente Patch-Management-Programme entwickeln. Ein kontinuierliches, priorisiertes Schwachstellenmanagement ist ein Muss.

Mit Greenbone gegen Black Basta

Durchgesickerte interne Chat-Protokolle der Ransomware-Gruppe Black Basta lassen in die Taktik und die inneren Abläufe der Gruppe blicken. Die Protokolle wurden von einer Person unter dem Pseudonym „ExploitWhispers“ veröffentlicht, die behauptet, die Veröffentlichung sei eine Reaktion auf die umstrittenen Angriffe von Black Basta auf russische Banken, die angeblich zu internen Konflikten innerhalb der Gruppe führten. Seit seinem Auftauchen im April 2022 hat Black Basta Berichten zufolge über 100 Millionen US-Dollar an Lösegeldzahlungen von mehr als 300 Opfern weltweit erhalten. 62 CVEs, auf die in den geleakten Dokumenten verwiesen wird, offenbaren die Taktik der Gruppe zur Ausnutzung bekannter Schwachstellen. Von diesen 62 CVEs unterhält Greenbone Erkennungstests für 61, was 98 % der CVEs abdeckt.

Greynoise-Report über massenhafte Ausnutzung von Schwachstellen

Mass-Exploitation-Angriffe sind vollautomatische Angriffe auf Dienste im Netzwerk, die via Internet zugänglich sind. Diesen Monat hat Greynoise einen umfassenden Bericht veröffentlicht, der die Mass-Exploitation-Landschaft zusammenfasst, einschließlich der 20 wichtigsten CVEs, die von den größten Botnets angegriffen werden (eindeutige IPs) und der Anbieter der am häufigsten angegriffenen Produkte. Hinzu kommen die wichtigsten der in den KEV-Katalog (Known Exploited Vulnerabilities) der CISA (Cybersecurity and Infrastructure Security Agency) aufgenommenen CVEs, die von Botnets ausgenutzt werden. Der Greenbone Enterprise Feed bietet Erkennungstests für 86 % aller CVEs (86 insgesamt), auf die im Bericht verwiesen wird. Wenn nur CVEs berücksichtigt werden, die im Jahr 2020 oder später veröffentlicht wurden (insgesamt 66), deckt unser Enterprise Feed 90 % davon ab.

Weitere Ergebnisse sind:

  • 60 % der CVEs, die bei Massenangriffen ausgenutzt wurden, wurden 2020 oder später veröffentlicht.
  • Angreifer nutzen Schwachstellen innerhalb von Stunden nach ihrer Veröffentlichung aus.
  • 28 % der Schwachstellen in CISA KEV werden von Ransomware-Gruppen ausgenutzt.

Zimbra Collaboration Suite

CVE-2023-34192 (CVSS 9.0) ist eine hoch gefährliche Cross-Site-Scripting (XSS)-Schwachstelle in der Zimbra Collaboration Suite (ZCS) Version 8.8.15. Sie erlaubt authentifizierten Angreifern die Ausführung von beliebigem Code über manipulierte Skripte, die auf die Funktion „/h/autoSaveDraft“ abzielen. Die CISA hat CVE-2023-34192 in ihren KEV-Katalog aufgenommen, was darauf hindeutet, dass die Schwachstelle aktiv in realen Angriffen ausgenutzt wurde. Der PoC-Exploit-Code (Proof of Concept) ist öffentlich verfügbar, sodass auch weniger erfahrene Angreifer hier mitmischen können. CVE-2023-34192 hat seit ihrer Aufdeckung im Jahr 2023 einen sehr hohen EPSS-Score. Für Verteidiger, die EPSS (Exploit Prediction Scoring System) für die Priorisierung von Abhilfemaßnahmen nutzen, bedeutet dies, mit hoher Priorität zu patchen.

Die Zimbra Collaboration Suite (ZCS) ist eine Open-Source-Plattform für Office-Anwendungen, die E-Mail, Kalender, Kontakte, Aufgaben und Tools für die Zusammenarbeit integriert, aber einen Nischenmarktanteil von weniger als 1 % aller E-Mail- und Messaging-Plattformen hält.

„Living on the Edge“: kritische Schwachstellen in Netzwerkgeräten

In unserem monatlichen Threat Report haben wir die anhaltende Bedrohung von Edge-Netzwerkgeräten nachvollzogen. Anfang dieses Monats berichteten wir über das maximale Desaster, das die Auslaufmodelle der Zyxel-Router und -Firewalls heraufbeschwören. In diesem Abschnitt befassen wir uns mit neuen Sicherheitsrisiken, die in die Kategorie „Edge Networking“ fallen. Greenbone verfügt über Erkennungsfunktionen für alle im Folgenden beschriebenen CVEs.

Chinesische Hacker nutzen PAN-OS von Palo Alto für Ransomware

CVE-2024-0012 (CVSS 9.8), eine Sicherheitslücke in Palo Alto PAN-OS, die im November letzten Jahres bekannt wurde, gilt als eine der am häufigsten ausgenutzten Sicherheitslücken des Jahres 2024. Die CVE wird Berichten zufolge auch von staatlich unterstützten chinesischen Bedrohungsakteuren für Ransomware-Angriffe genutzt. Eine weitere neue Schwachstelle, die PAN-OS betrifft, CVE-2025-0108 (CVSS 9.1), wurde erst diesen Monat bekannt gegeben und von der CISA sofort als aktiv ausgenutzt eingestuft. Mit CVE-2025-0108 lässt sich die Authentifizierung in der Webmanagement-Schnittstelle umgehen. Sie kann mit gekoppelt werden mit CVE-2024-9474 (CVSS 7.2), einer separaten Schwachstelle für die Ausweitung von Privilegien, um unauthentifizierte Kontrolle über Root-Dateien in einem ungepatchten PAN-OS-Gerät zu erlangen.

SonicWall flickt kritische, aktiv ausgenutzte Schwachstelle in SonicOS

CVE-2024-53704, eine kritische Sicherheitslücke in SonicWall-Geräten, wurde kürzlich in die KEV-Liste der CISA aufgenommen. Erstaunlicherweise listet die CISA acht CVEs bei SonicWall auf, von denen bekannt ist, dass sie aktiv in Ransomware-Angriffen ausgenutzt werden. Die neue Bedrohung, CVE-2024-53704 (CVSS 9.8) ist eine Schwachstelle, die durch einen unsauberen Authentifizierungsmechanismus [CWE-287] im SSLVPN der SonicOS-Versionen 7.1.1-7058 und älter, 7.1.2-7019 und 8.0.0-8035 von SonicWall entsteht. Sie ermöglicht es Angreifern, die Authentifizierung zu umgehen und aktive SSL-VPN-Sitzungen zu kapern, wodurch sie möglicherweise unbefugten Zugriff auf das Netzwerk erhalten. Eine vollständige technische Analyse ist bei BishopFox verfügbar. In einem Security Advisory von SonicWall werden außerdem weitere CVEs mit hohem Schweregrad in SonicOS genannt, die zusammen mit CVE-2024-53704 gepatcht wurden.

CyberoamOS und EOL XG Firewalls von Sophos aktiv ausgenutzt

Der Security-Anbieter Sophos, der Cyberoam im Jahr 2014 übernommen hat, hat eine Warnung und einen Patch für CVE-2020-29574 herausgegeben. CyberoamOS ist Teil des Produkt-Ökosystems von Sophos. Abgesehen von diesem CVE ist auch die Sophos XG Firewall, die bald auslaufen wird, Gegenstand einer Warnung über eine mögliche aktive Ausnutzung.

  • CVE-2020-29574 (CVSS 9.8): Eine kritische SQL-Injection-Schwachstelle [CWE-89] wurde in der WebAdmin-Schnittstelle von CyberoamOS-Versionen bis zum 4. Dezember 2020 entdeckt. Dieser Fehler ermöglicht es nicht authentifizierten Angreifern, beliebige SQL-Anweisungen aus der Ferne auszuführen und möglicherweise vollständigen administrativen Zugriff auf das Gerät zu erlangen. Es wurde ein Hotfix-Patch veröffentlicht, der auch für einige betroffene End-of-Life (EOL) Produkte gilt.
  • CVE-2020-15069 (CVSS 9.8) ist eine kritische Buffer-Overflow-Schwachstelle in den Sophos XG Firewall-Versionen 17.x bis v17.5 MR12, die nicht authentifizierte Remote Code Execution (RCE) über die HTTP/S-Lesezeichen-Funktion für den clientlosen Zugriff ermöglicht. Diese 2020 veröffentlichte Sicherheitslücke wird nun aktiv ausgenutzt und wurde in die CISA KEV aufgenommen, was auf ein erhöhtes Risiko hinweist. Sophos veröffentlichte 2020, als die Sicherheitslücke bekannt wurde, einen Hinweis zusammen mit einem Hotfix für betroffene Firewalls. Die Hardware-Appliances der XG-Serie werden voraussichtlich bald, am 31. März 2025, das Ende ihrer Lebensdauer (EOL) erreichen.

PrivEsc- und Auth-Umgehungen in Fortinet FortiOS und FortiProxy

Fortinet hat zwei kritische Sicherheitslücken bekannt gegeben, die beide FortiOS und FortiProxy betreffen. Das Canadian Center for Cybersecurity und das Belgian Center for Cybersecurity haben Hinweise veröffentlicht. Fortinet räumt ein, dass CVE-2024-55591 aktiv ausgenutzt wird, und hat eine offizielle Anleitung veröffentlicht, die Details zu den betroffenen Versionen und empfohlenen Updates enthält.

  • CVE-2024-55591 (CVSS 9.8): Ein Authentication Bypass unter Verwendung eines alternativen Pfads oder Kanals [CWE-288], die FortiOS betrifft, ermöglicht es einem Angreifer, remote über manipulierte Anfragen an das Node.js-Websocket-Modul Super-Admin-Rechte zu erlangen. Es stehen mehrere PoC-Exploits zur Verfügung [1][2], die das Risiko einer Ausnutzung durch weniger erfahrene Angreifer erhöhen.
  • CVE-2024-40591 (CVSS 8.8): Ermöglicht es einem authentifizierten Administrator mit Security Fabric-Berechtigungen, seine Privilegien zum Super-Administrator zu erweitern, indem er das betroffene FortiGate-Gerät mit einem kompromittierten Upstream-FortiGate unter seiner Kontrolle verbindet.

Cisco-Schwachstellen als erste Zugangsvektoren bei Telekom-Hacks

In den letzten Monaten hat die chinesische Spionagegruppe Salt Typhoon routinemäßig mindestens zwei kritische Schwachstellen in Cisco IOS XE-Geräten ausgenutzt, um sich dauerhaft Zugang zu Telekommunikationsnetzen zu verschaffen. Zu den Opfern gehören italienische ISPs, eine südafrikanische und eine große thailändische Telekommunikationsgesellschaft sowie zwölf Universitäten weltweit, darunter die UCLA, die indonesische Universitas Negeri Malang und die mexikanische UNAM. Zuvor hatte Salt Typhoon mindestens neun US-amerikanische Telekommunikationsunternehmen angegriffen, darunter Verizon, AT&T und Lumen Technologies. Die US-Behörden behaupten, Salt Typhoons Ziel sei die Überwachung von hochrangigen Personen, politischen Persönlichkeiten und Beamten, die mit chinesischen politischen Interessen in Verbindung stehen.

Zu den CVEs, die von Salt Typhoon ausgenutzt werden, gehören:

  • CVE-2023-20198 (CVSS 10): Eine Schwachstelle zur Privilegien-Erweiterung in der Web-Schnittstelle von Cisco IOS XE. Sie wird für den anfänglichen Zugriff verwendet und ermöglicht es Angreifern, ein Admin-Konto zu erstellen.
  • CVE-2023-20273 (CVSS 7.2): Eine weitere Schwachstelle, die zur Erweiterung von Privilegien führt. Nach Erlangung des Admin-Zugriffs wird sie dazu genutzt, den privilegierten Zugriff auf Root-Dateien zu erweitern und einen GRE-Tunnel (Generic Routing Encapsulation) für den dauerhaften Verbleib im Netzwerk einzurichten.

Außerdem wurden im Februar 2025 zwei weitere CVEs in Cisco-Produkten bekannt:

  • CVE-2023-20118 (CVSS 7.2): Eine Command-Injection-Schwachstelle in der webbasierten Management-Oberfläche von Cisco Small Business Routern erlaubt es authentifizierten, entfernten Angreifern, beliebige Befehle mit Root-Rechten auszuführen, indem sie manipulierte HTTP-Anfragen senden. Die CISA hat CVE-2023-20118 in ihren KEV-Katalog aufgenommen, was darauf hindeutet, dass die Schwachstelle aktiv ausgenutzt wird.
  • CVE-2023-20026 (CVSS 7.2): Eine Command-Injection-Schwachstelle in der webbasierten Management-Oberfläche der Cisco Small Business Router der RV042-Serie erlaubt authentifizierten, entfernten Angreifern mit gültigen administrativen Anmeldeinformationen, beliebige Befehle auf dem Gerät auszuführen. Die Schwachstelle ist auf eine unsachgemäße Validierung von Benutzereingaben in eingehenden HTTP-Paketen zurückzuführen. Es ist zwar nicht bekannt, dass CVE-2023-20026 in aktiven Kampagnen ausgenutzt wird, aber dem Product Security Incident Response Team (PSIRT) von Cisco ist bekannt, dass PoC-Exploit-Code für diese Sicherheitslücke existiert.

Ivanti patcht vier kritische Schwachstellen

Es wurden vier kritische Schwachstellen identifiziert, die Ivanti Connect Secure (ICS), Policy Secure (IPS) und Cloud Services Application (CSA) betreffen. Bisher sind keine Berichte über aktive Angriffe in freier Wildbahn oder PoC-Exploits aufgetaucht. Ivanti rät Anwendern, umgehend auf die neuesten Versionen zu aktualisieren, um diese kritischen Sicherheitslücken zu schließen.

Hier ist eine kurze technische Zusammenfassung:

  • CVE-2025-22467 (CVSS 8.8): Angreifer mit Anmeldeinformationen können aufgrund eines Stack-basierten Buffer Overflow in ICS-Versionen vor 22.7R2.6 Remote Code Execution (RCE) erreichen [CWE-121].
  • CVE-2024-38657 (CVSS 9.1): Angreifer mit Anmeldeinformationen können beliebige Dateien schreiben aufgrund einer externen Kontrolle des Dateinamens in ICS-Versionen vor 22.7R2.4 und IPS-Versionen vor 22.7R1.3.
  • CVE-2024-10644 (CVSS 9.1): Ein Code-Injection-Fehler in ICS (vor 22.7R2.4) und IPS (vor 22.7R1.3) ermöglicht beliebige RCE für authentifizierte Administratoren.
  • CVE-2024-47908 (CVSS 7.2): Eine Schwachstelle in der Command Injection des Betriebssystems [CWE-78] in der Admin-Webkonsole von CSA (Versionen vor 5.0.5) erlaubt beliebige RCE für authentifizierte Administratoren.

Zusammenfassung

Der Threat Report dieses Monats beleuchtet wichtige Entwicklungen im Bereich der Cybersicherheit, darunter die sich weiterentwickelnden Taktiken von Ransomware-Gruppen wie Black Basta und die allgegenwärtige kritische Bedrohung für Edge-Netzwerkgeräte. Unterstützt durch KI-Tools nutzen Angreifer Schwachstellen immer schneller aus – manchmal schon wenige Stunden nach ihrer Entdeckung. Unternehmen müssen wachsam bleiben, indem sie proaktive Sicherheitsmaßnahmen ergreifen, ihre Abwehr kontinuierlich aktualisieren und Bedrohungsdaten nutzen, um neuen Gefahren einen Schritt voraus zu sein.

Wir freuen uns, die Veröffentlichung mehrerer Funktions-Updates für unser Greenbone Operating System (GOS), den Software-Stack hinter unseren physischen und virtuellen Enterprise Appliances, bekannt zu geben. Die Updates führen neue Front-End-Funktionen ein, die das Schwachstellenmanagement im Unternehmen verbessern, sowie leistungssteigernde Back-End-Funktionen. Die neuesten Updates des Greenbone Operating System (GOS), Version 24.10, spiegeln das Engagement von Greenbone wider, Best Practices für eine grundlegende Cybersicherheit zu fördern und Unternehmen in die Lage zu versetzen, Sicherheitslücken schneller als je zuvor zu priorisieren und zu schließen.

In diesem Beitrag stellen wir Ihnen die neuesten Funktionen und Verbesserungen vor, die unsere Enterprise Appliances zu noch leistungsfähigeren Tools für das Exposure Management und die Einhaltung von Cybersicherheitsvorschriften machen.

GOS 24.10 bringt alle neuen Funktionen

Der Greenbone Security Assistant (GSA) ist das Tor des IT-Administrators zur Transparenz von IT-Security. Das Web-Interface des GSA präsentiert sich in einem völlig neuen Gewand. Die aktualisierte Version zeichnet sich durch ein modernes, minimalistisches Erscheinungsbild aus, das den Schwerpunkt auf Nützlichkeit und Benutzerfreundlichkeit legt und gleichzeitig alle Möglichkeiten von Greenbone in Reichweite bereitstellt. Aber das neue Aussehen ist nur die Oberfläche. Schauen wir uns einige tiefgreifendere Änderungen an.

Die neue Ansicht des Compliance Audit Reports

Die Einhaltung von Vorschriften zur Cybersicherheit wird immer wichtiger. Neue Regulierungen in der EU wie der Digital Operational Resilience Act (DORA), die Network and Information Security Directive 2 (NIS2) und der Cyber Resilience Act (CRA) verlangen von Unternehmen mehr proaktive Maßnahmen zum Schutz ihren digitalen Infrastrukturen. Andere Faktoren wie Cybersecurity-Versicherungen, die Notwendigkeit einer stärkeren Überwachung durch Dritte und die Rechenschaftspflicht gegenüber den Kunden wirken sich auf die Art und Weise aus, wie Unternehmen ihre Cybersecurity-Aktivitäten beaufsichtigen.

Das GOS 24.10-Update enthält eine brandneue, auf die Einhaltung von Vorschriften ausgerichtete Compliance-Ansicht. Die aktualisierte Benutzeroberfläche ermöglicht einen besseren Einblick in Cybersecurity-Risiken und unterstützt die Ausrichtung an IT-Governance-Zielen. Sie enthält Reports für Compliance-Audits, neue Dashboard-Anzeigen und Filteroptionen. Dadurch lassen sich die auf Compliance ausgerichteten Daten von den regulären Scan-Berichten unterscheiden. In den Delta-Audit-Berichten werden die Fortschritte bei der Einhaltung der Vorschriften durch visuelle Indikatoren und Tooltips hervorgehoben, die eine einfache Identifizierung ermöglichen.

EPSS-Unterstützung mit KI-gestützter Priorisierung

Da die Zahl der neuen CVEs (Common Vulnerabilities and Exposures) weiter zunimmt, ist es wichtig, Schwachstellen zu priorisieren, um sich auf die Bedrohungen mit den größten Auswirkungen konzentrieren zu können. Das Exploit Prediction Scoring System (EPSS) ist eine KI-gestützte Metrik, die die Wahrscheinlichkeit schätzt, dass ein CVE in freier Wildbahn ausgenutzt wird. EPSS wendet maschinelles Lernen (ML) auf historische Daten an, um vorherzusagen, bei welchen neuen CVEs das Risiko eines aktiven Angriffs am höchsten ist.

EPSS-Daten sind jetzt in unsere Enterprise Appliances integriert. Regelmäßig aktualisierte Wahrscheinlichkeiten zur Ausnutzung für alle aktiven CVEs sind in der Greenbone-Plattform nicht verfügbar. Administratoren können zusätzlich zum traditionellen Schweregrad im CVSS (Common Vulnerability Scoring System) aktuelle Werte für die Wahrscheinlichkeit und die Perzentile von Exploits nutzen und sich so auf die kritischsten Schwachstellen in ihrem Betrieb konzentrieren.

Mehr Möglichkeiten für anpassbare CSV- und JSON-Berichte

Greenbone war schon immer auf Einfachheit und Flexibilität ausgerichtet. So erfüllen die Lösungen ein breites Spektrum an besonderen betrieblichen Anforderungen. GOS 24.10 führt den Export von Berichten im JSON-Format ein. Außerdem können die Benutzer jetzt die Felder in exportierten CSV- und JSON-Berichten anpassen. So können sie Reports direkt von Greenbone aus anpassen, um den Berichtsanforderungen genauer zu entsprechen und sich auf das zu konzentrieren, was für die Analyse, die Einhaltung von Vorschriften oder die Entscheidungsfindung wesentlich ist.

Zusätzliche Backend-Optimierungen

Um die Flexibilität und Genauigkeit des Schwachstellenabgleichs zu verbessern, hat Greenbone mehrere Backend-Optimierungen eingeführt, die sich auf die Handhabung von CPE (Common Platform Enumeration) und das Feed-Management konzentrieren. Hier ein Blick auf die Neuerungen:

  • Das Backend kann CPEv2.3-Strings in CPEv2.2-URIs konvertieren und beide Versionen für einen zuverlässigeren Abgleich der betroffenen Produkte speichern. Zukünftige Entwicklungen werden möglicherweise einen fortgeschrittenen Abgleich im laufenden Betrieb umfassen, der die Bewertung von Schwachstellen noch präziser macht.
  • Greenbone Enterprise Appliances unterstützen jetzt JSON-basierte CVE-, CPE-, EPSS- und CERT-Feeds sowie gzip-Datenkompression.

Zusammenfassung

Mit der Veröffentlichung einer neuen Runde von Updates stärkt Greenbone die Flaggschiff-Produkte der Greenbone Enterprise Appliances. Die Updates führen ein modernisiertes GSA-Web-Interface ein, eine auf die Einhaltung von Vorschriften ausgerichtete Audit-Berichtsansicht für mehr Transparenz und verbesserte CSV- und JSON-Exportfunktionen, die den Anwendern die Kontrolle über die Berichtsdaten geben. Außerdem wurden die verfügbaren Optionen für die Priorisierung von Schwachstellenrisiken um KI-basiertes EPSS erweitert. Schließlich gewährleisten Backend-Optimierungen die nahtlose Kompatibilität mit neuen CPE-Formaten und JSON-basierten Feeds. Zusammengenommen ergänzen diese Funktionen die anpassungsfähigen Schwachstellenmanagement-Funktionen von Greenbone und ermöglichen es Unternehmen, aufkommenden Bedrohungen mit branchenführender Schwachstellenerkennung und -priorisierung einen Schritt voraus zu sein.

Im Jahr 2024 verlangte die geopolitische Instabilität, gekennzeichnet durch die Konflikte in der Ukraine und im Nahen Osten, nach einer stärkeren Cybersicherheit sowohl im öffentlichen als auch im privaten Sektor. China nahm die US-Verteidigung, Versorgungsunternehmen, Internetprovider und das Transportwesen ins Visier, während Russland koordinierte Cyberangriffe auf US-amerikanische und europäische Staaten startete, um die öffentliche Meinung zu beeinflussen und Uneinigkeit unter den westlichen Verbündeten über den Ukraine-Krieg zu schaffen. Am Ende von 2024 blicken wir auf eine hektische Cybersicherheitslandschaft am Rande des Abgrunds zurück.

2024 war ein weiteres Rekordjahr für CVE-Veröffentlichungen (Common Vulnerabilities and Exposures). Auch wenn es sich bei vielen Meldungen um sogenannte „AI Slop“-Meldungen [1][2] handelt, gleicht die schiere Menge der veröffentlichten Schwachstellen einen großen Heuhaufen. Da IT-Sicherheitsteams versuchen, die hoch riskanten „Nadeln“ in einem noch größeren „Heuhaufen“ zu finden, steigt die Wahrscheinlichkeit, dass sie übersehen werden. 2024 war auch ein Rekordjahr für Ransomware-Auszahlungen in Bezug auf Volumen und Umfang sowie für Denial-of-Service-Angriffe (DoS).

Zusätzlich fiel auch die „National Vulnerability Database“ des NIST (National Institute of Standards and Technology) aus, von der weltweit viele Organisationen betroffen waren, darunter auch Security-Anbieter. Der CVE-Scanner von Greenbone basiert auf dem CPE-Abgleich (Common Platform Enumeration) und ist von dem Ausfall des NIST NVD betroffen. Der primäre Scan-Motor von Greenbone, OpenVAS Scanner, ist jedoch nicht betroffen. OpenVAS interagiert direkt mit Diensten und Anwendungen, sodass unsere Entwickler anhand der Details aus den ersten CVE-Berichten zuverlässige Schwachstellentests erstellen können.

Im Jahr 2025 wird das Glück den Unternehmen hold sein, die vorbereitet sind. Angreifer nutzen Cyber-Intelligenz vermehrt als Waffe; die durchschnittliche Time-to-Exploit (TTE) beträgt nur noch Tage oder sogar Stunden. Der Aufstieg der KI wird neue Herausforderungen für die Cybersicherheit mit sich bringen. Neben diesen Fortschritten bleiben traditionelle Bedrohungen wie für die Cloud-Sicherheit oder für Software-Lieferketten von entscheidender Bedeutung. Sicherheitsanalysten sagen voraus, dass grundlegende Netzwerkgeräte wie VPN-Gateways, Firewalls und andere Edge-Geräte auch im Jahr 2025 ein begehrtes Ziel sein werden.

In dieser Ausgabe unseres monatlichen Threat Reports befassen wir uns mit den bedrohlichsten Schwachstellen und aktiven Kampagnen zu deren Ausnutzung, die im Dezember 2024 aufgetaucht sind.

Mitel MiCollab: ein blitzartig ausgenutzter Zero-Day

Sobald Schwachstellen veröffentlicht werden, stürzen sich Angreifer mit zunehmender Geschwindigkeit auf sie. Für einige Schwachstellen gibt es innerhalb von Stunden öffentlichen Proof-of-Concept-Exploit-Code (PoC), sodass den Verteidigern nur eine minimale Reaktionszeit bleibt. Anfang Dezember beobachteten die Forscher von GreyNoise die Ausnutzung von Mitel MiCollab am selben Tag, an dem der PoC-Code veröffentlicht wurde. Mitel MiCollab vereint Sprache, Video, Messaging, Präsenz und Konferenzen auf einer Plattform. Die neuen Schwachstellen haben neben der amerikanischen CISA (Cybersecurity and Infrastructure Security Agency) auch beim belgischen National Center for Cybersecurity, dem Australian Signals Directorate (ASD) und dem britischen National Health Service (NHS) Warnungen hervorgerufen. Die Behebung der jüngsten Sicherheitslücken in MiCollab wird als dringend angesehen.

Hier einige Details zu den neuen aktiv ausgenutzten CVEs in Mitel MiCollab:

  • CVE-2024-41713 (CVSS 7.8 Hoch): Die „Path Traversal“-Schwachstelle in der NPM-Komponente (NuPoint Unified Messaging) von Mitel MiCollab ermöglicht den unauthentifizierten Zugriff auf Dateien durch Ausnutzung der „…/“-Technik in HTTP-Anfragen. Dies kann hochsensible Dateien offenlegen.
  • CVE-2024-35286 (CVSS 10 Kritisch): Eine SQL-Injection-Schwachstelle in der NPM-Komponente von Mitel MiCollab, die es einem böswilligen Akteur ermöglicht, einen SQL-Injection-Angriff auszuführen.

Seit Mitte 2022 hat die CISA drei weitere CVEs in Mitel-Produkten aufgespürt, von denen bekannt ist, dass sie für Ransomware-Angriffe genutzt werden. Greenbone kann Endpunkte erkennen, die für diese hochgradig gefährlichen CVEs anfällig sind, und zwar mit aktiven Prüfungen [4][5].

SSL-VPNs von Array Networks von Ransomware ausgenutzt

CVE-2023-28461 (CVSS 9.8 Kritisch) ist eine Schwachstelle für Remote Code Execution (RCE) in den Array AG Series und vxAG SSL VPN Appliances von Array Networks. Die Geräte, vom Hersteller angepriesen als Präventivmaßnahme gegen Ransomware, werden nun aktiv in jüngsten Ransomware-Angriffen ausgenutzt. Array Networks selbst wurde Anfang dieses Jahres von der Dark Angels Ransomware-Bande angegriffen [1][2].

Jüngsten Berichten zufolge hält Array Networks einen beträchtlichen Marktanteil im Bereich Application Delivery Controller (ADC). Laut dem WW Quarterly Ethernet Switch Tracker von IDC ist das Unternehmen mit einem Marktanteil von 34,2 % Marktführer in Indien. Array Networks hat Patches für betroffene Produkte mit ArrayOS AG 9.4.0.481 und früheren Versionen veröffentlicht. Der Greenbone Enterprise Feed enthält einen Erkennungstest für CVE-2023-28461, seit dieser Ende März 2023 bekanntgegeben wurde.

CVE-2024-11667 in Zyxel Firewalls

CVE-2024-11667 (CVSS 9.8 Kritisch) in den Firewall-Appliances von Zyxel wird aktiv in aktuellen Ransomware-Angriffen ausgenutzt. Eine „Directory Traversal“-Schwachstelle in der Web-Management-Schnittstelle könnte es einem Angreifer ermöglichen, Dateien über eine böswillig gestaltete URL herunter- oder hochzuladen. Zyxel Communications ist ein taiwanesisches Unternehmen, das sich auf die Entwicklung und Herstellung von Netzwerkgeräten für Unternehmen, Dienstanbieter und Verbraucher spezialisiert hat. Berichten zufolge liegt der Marktanteil von Zyxel bei etwa 4,2 % in der ITK-Branche mit einer vielfältigen globalen Präsenz, zu der auch große Fortune-500-Unternehmen gehören.

In Fällen wie diesem ist ein „Defense in Depth“-Ansatz für die Cybersicherheit besonders wichtig. Wenn Angreifer ein Netzwerkgerät wie eine Firewall kompromittieren, erhalten sie in der Regel nicht sofort Zugriff auf hochsensible Daten. Der anfängliche Zugriff ermöglicht es den Angreifern jedoch, den Netzwerkverkehr zu überwachen und das Netzwerk des Opfers auf der Suche nach wertvollen Zielen zu durchforsten.

Zyxel empfiehlt, Ihr Gerät auf die neueste Firmware zu aktualisieren, den Fernzugriff vorübergehend zu deaktivieren, wenn Updates nicht sofort angewendet werden können, und die bewährten Verfahren zur Sicherung verteilter Netzwerke anzuwenden. CVE-2024-11667 betrifft die Firmware-Versionen V5.00 bis V5.38 der Zyxel ATP-Serie, die Firmware-Versionen V5.00 bis V5.38 der USG FLEX-Serie, die Firmware-Versionen V5.10 bis V5.38 der USG FLEX 50(W)-Serie und die Firmware-Versionen V5.10 bis V5.38 der USG20(W)-VPN-Serie. Greenbone kann die Sicherheitslücke CVE-2024-11667 bei allen betroffenen Produkten erkennen.

Kritische Schwachstellen in Apache Struts 2

CVE-2024-53677 (CVSS 9.8 Kritisch), ein unbeschränkter Dateiupload [CWE-434], der Apache Struts 2 betrifft, ermöglicht es Angreifern, ausführbare Dateien in Web-Root-Verzeichnisse hochzuladen. Wenn eine Web-Shell hochgeladen wird, kann die Schwachstelle zu unautorisierter Remote Code Execution führen. Apache Struts ist ein Java-basiertes Open-Source-Framework für Webanwendungen, das sowohl im öffentlichen als auch im privaten Sektor, einschließlich Behörden, Finanzinstituten und anderen großen Organisationen, weit verbreitet ist [1]. PoC-Exploit-Code (Proof-of-Concept) ist öffentlich verfügbar, und CVE-2024-53677 wird aktiv ausgenutzt, was das Risiko erhöht.

Die Sicherheitslücke wurde ursprünglich unter der Bezeichnung CVE-2023-50164 geführt und im Dezember 2023 veröffentlicht [2][3]. Ähnlich wie bei einer kürzlich aufgetretenen Schwachstelle in VMware vCenter war der ursprüngliche Patch jedoch unwirksam, was zum erneuten Auftreten der Schwachstelle führte. CVE-2024-53677 betrifft die Komponente FileUploadInterceptor, sodass Anwendungen, die dieses Modul nicht verwenden, nicht betroffen sind. Benutzer sollten ihre Struts2-Instanz auf Version 6.4.0 oder höher aktualisieren und auf den neuen Datei-Upload-Mechanismus umstellen. Weitere neue kritische CVEs in beliebter Open-Source-Software (OSS) von Apache:

Die Apache Software Foundation (ASF) folgt bei ihren Projekten einem strukturierten Prozess, der die private Berichterstattung und die Veröffentlichung von Patches vor der öffentlichen Bekanntgabe fördert, so dass Patches für alle oben genannten CVEs verfügbar sind. Greenbone kann Systeme erkennen, die für CVE-2024-53677 anfällig sind, ebenso wie andere kürzlich bekannt gewordene Schwachstellen in Produkten der ASF Foundation.

Palo Altos Secure DNS wird aktiv für DoS ausgenutzt

CVE-2024-3393 (CVSS 8.7 Hoch) ist eine DoS-Schwachstelle (Denial of Service) in der DNS-Sicherheitsfunktion von PAN-OS. Die Schwachstelle ermöglicht es einem nicht authentifizierten Angreifer, Firewalls der PA-Serie, VM-Serie, CN-Serie und Prisma Access-Geräte über bösartige Pakete, die auf Datenebene gesendet werden, neu zu starten. Durch wiederholtes Auslösen dieses Zustands können Angreifer die Firewall dazu bringen, in den Wartungsmodus zu wechseln. Die CISA hat die Schwachstelle CVE-2024-3393 als aktiv ausgenutzt identifiziert. Sie ist eine von fünf weiteren aktiv ausgenutzten Schwachstellen in Palo-Alto-Produkten, die allein in den letzten zwei Monaten aufgetreten sind.

Laut den von Palo Alto veröffentlichten Empfehlungen sind nur Geräte mit einer DNS Security License oder Advanced DNS Security License und aktivierter Protokollierung betroffen. Es wäre eine einfache Annahme zu sagen, dass diese Bedingungen bedeuten, dass Top-Tier-Unternehmenskunden betroffen sind. Greenbone kann mit einem Versionserkennungstest Geräte identifizieren, die von CVE-2024-3393 betroffen sind.

Microsoft-Sicherheit im Jahr 2024: Wer hat die Fenster offengelassen?

Auch wenn es unfair wäre, Microsoft für die Bereitstellung anfälliger Software im Jahr 2024 verantwortlich zu machen, hat das Redmonder BigTech die Sicherheitserwartungen sicherlich nicht übertroffen. 2024 wurden insgesamt 1.119 CVEs in Microsoft-Produkten offengelegt; 53 erreichten einen kritischen Schweregrad (CVSS > 9.0), 43 wurden in den KEV-Katalog (Known Exploited Vulnerabilities) der CISA aufgenommen, und mindestens vier waren bekannte Vektoren für Ransomware-Angriffe. Obwohl der Vergleich grob ist, gab es im Linux-Kernel mehr (3.148) neue CVEs, aber nur drei wurden als kritisch eingestuft und nur drei wurden in den KEV-Katalog der CISA aufgenommen. Hier sind die Details zu den neuen aktiv ausgenutzten CVEs in Microsoft Windows:

  • CVE-2024-35250 (CVSS 7.8 Hoch): Eine Schwachstelle zur Ausweitung von Privilegien, die es einem Angreifer mit lokalem Zugriff auf ein System ermöglicht, Privilegien auf Systemebene zu erlangen. Die Schwachstelle wurde im April 2024 entdeckt, und im Oktober wurde PoC-Exploit-Code online gestellt.
  • CVE-2024-49138 (CVSS 7.8 Hoch): Eine Heap-basierte „Buffer Overflow“-Schwachstelle [CWE-122] zur Erweiterung von Privilegien; dieses Mal im Treiber des Microsoft Windows Common Log File System (CLFS). Obwohl es keinen öffentlich zugänglichen Exploit gibt, haben Security-Forschende Hinweise darauf, dass diese Sicherheitslücke ausgenutzt werden kann, indem ein bösartiges CLFS-Protokoll erstellt wird, um privilegierte Befehle auf der Ebene der Systemberechtigungen auszuführen.

Die Erkennung und Entschärfung dieser neuen Windows CVEs ist von entscheidender Bedeutung, da sie aktiv angegriffen werden. Beide wurden in Microsofts Dezember-Patch-Release gepatcht. Greenbone kann CVE-2024-35250 und CVE-2024-49138 erkennen sowie alle anderen als CVEs veröffentlichten Sicherheitslücken von Microsoft.

Zusammenfassung

2024 unterstrich die anhaltende Herausforderung in der Cybersicherheit mit rekordverdächtigen Enthüllungen von Schwachstellen, Ransomware-Auszahlungen, DoS-Angriffen und einem alarmierenden Anstieg aktiver Ausnutzung von Schwachstellen. Die schnelle Verwandlung von Schwachstellen in Angriffswaffen unterstreicht die Notwendigkeit einer kontinuierlichen Strategie für das Schwachstellenmanagement und eines Defense-in-Depth-Ansatzes.

Im Dezember gab es neue kritische Schwachstellen in Mitel-, Apache- und Microsoft-Produkten. Weitere Netzwerkprodukte: VPNs von Array Networks und Firewalls von Zyxel werden jetzt von Ransomware-Akteuren ausgenutzt, was noch einmal bestätigt, dass proaktive Maßnahmen zur Erkennung und Patchen von Schwachstellen ergriffen werden müssen. Auf dem Weg ins Jahr 2025 wird Fortuna diejenigen begünstigen, die hierauf vorbereitet sind; Unternehmen müssen wachsam bleiben, um die Risiken in einer zunehmend feindlichen Cyberlandschaft im Zaum zu halten.

In der ersten Hälfte des Jahres 2024 war die Cybersicherheit für viele Unternehmen sehr prekär. Selbst in sehr wichtigen Bereichen führten kritische Schwachstellen zu einer permanenten Bedrohung durch Cyberangriffe. Die Verteidiger stehen damit im ständigen Kampf, die unaufhaltsam entstehenden Sicherheitslücken zu erkennen und zu beheben. Große Unternehmen sind Ziel ausgeklügelter „Großwild-Jagden“ von Ransomware-Banden, die den Ransomware-Jackpot knacken wollen. Die größte Auszahlung aller Zeiten wurde im August gemeldet – 75 Millionen Dollar an die Dark Angels-Bande. Kleine und mittlere Unternehmen sind ebenfalls täglich Ziel von automatisierten „Mass Exploitation“-Angriffen, die ebenfalls häufig auf die Verbreitung von Ransomware abzielen [1][2][3].

Ein kurzer Blick auf die „Top Routinely Exploited Vulnerabilities“ der CISA zeigt, dass Cyberkriminelle zwar neue Informationen zu CVE (Common Vulnerabilities and Exposures) innerhalb weniger Tage oder sogar Stunden in Exploit-Code umwandeln können, ältere Schwachstellen aus den vergangenen Jahren aber immer noch auf ihrem Radar haben.

Im Threat Tracking dieses Monats beleuchten wir einige der größten Risiken für die Cybersicherheit in Unternehmen. Dabei geht es um Schwachstellen, die kürzlich als aktiv ausgenutzt gemeldet wurden, und andere kritische Schwachstellen in IT-Produkten von Unternehmen.

BSI findet Fehler in LibreOffice

OpenSource Security hat im Auftrag des Bundesamts für Sicherheit in der Informationstechnik (BSI) eine Sicherheitslücke in LibreOffice entdeckt. Unter der Bezeichnung CVE-2024-6472 (CVSS 7.8 Hoch) wurde festgestellt, dass Benutzer in LibreOffice-Dokumenten eingebettete unsignierte Makros aktivieren und damit die Einstellung „Hochsicherheitsmodus“ außer Kraft setzen können. Während die Ausnutzung der Schwachstelle menschliche Interaktion erfordert, vermittelt sie ein falsches Gefühl von Sicherheit, da nicht signierte Makros nicht ausgeführt werden können, wenn der Hochsicherheitsmodus aktiviert ist.

KeyTrap: DoS-Angriff gegen DNSSEC

Im Februar 2024 enthüllten Wissenschaftler des deutschen Nationalen Forschungszentrums für Angewandte Cybersicherheit (ATHENE) in Darmstadt den „schlimmsten Angriff auf DNS, der jemals entdeckt wurde“. Den deutschen Forschern zufolge kann ein einziges Paket einen „Denial of Service“ (DoS) verursachen, indem es einen DNS-Resolver während der DNSSEC-Validierung überflutet. Unter dem Namen „KeyTrap“ können Angreifer die Schwachstelle ausnutzen, um Clients, die einen kompromittierten DNS-Server verwenden, am Zugriff auf das Internet oder lokale Netzwerkressourcen zu hindern. Schuld daran ist ein Designfehler in der aktuellen DNSSEC-Spezifikation [RFC-9364], der mehr als 20 Jahre zurückliegt [RFC-3833].

Die im Februar 2024 veröffentlichte und als CVE-2023-50387 (CVSS 7.5 Hoch) verfolgte Sicherheitslücke gilt als trivial und der Proof-of-Concept-Code ist auf GitHub verfügbar. Die Verfügbarkeit von Exploit-Code bedeutet, dass Kriminelle mit geringen Kenntnissen leicht Angriffe starten können. Greenbone kann Systeme mit anfälligen DNS-Anwendungen, die von CVE-2023-50387 betroffen sind, mit lokalen Sicherheitsüberprüfungen (LSC) für alle Betriebssysteme identifizieren.

CVE-2024-23897 in Jenkins hilft, um in indische Bank einzubrechen

CVE-2024-23897 (CVSS 9.8 Kritisch) in Jenkins (Versionen 2.441 und LTS 2.426.2 und früher) wird aktiv ausgenutzt und in Ransomware-Kampagnen verwendet, sogar gegen die National Payments Corporation of India (NPCI). Jenkins ist ein Open-Source Automation Server, der in erster Linie für die kontinuierliche Integration (CI) und die kontinuierliche Bereitstellung (CD) bei Software Development Operations (DevOps) verwendet wird.

Das Command Line Interface (CLI) in den betroffenen Versionen von Jenkins enthält eine Path Traversal-Schwachstelle [CWE-35], die durch eine Funktion verursacht wird, die das @-Zeichen gefolgt von einem Dateipfad durch den tatsächlichen Inhalt der Datei ersetzt. Dies ermöglicht es Angreifern, den Inhalt sensibler Dateien zu lesen, einschließlich solcher, die unbefugten Zugriff und anschließende Codeausführung ermöglichen. CVE-2024-23897 und ihre Verwendung in Ransomware-Angriffen folgen einer gemeinsamen Warnung der CISA und des FBI an Softwarehersteller, in ihren Produkten Schwachstellen in Bezug auf Pfad-Querungen zu beheben [CWE-35]. Greenbone enthält eine aktive Prüfung [1] und zwei Tests zur Versionserkennung [2][3], um verwundbare Versionen von Jenkins unter Windows und Linux zu identifizieren.

2 neue aktiv genutzte CVEs in Apache OFBiz

Apache OFBiz (Open For Business) ist eine beliebte Open-Source Software für ERP (Enterprise Resource Planning) und E-Commece, die von der Apache Software Foundation entwickelt wurde. Im August 2024 warnte die CISA die Cybersecurity Community vor einer aktiven Ausnutzung von Apache OFBiz über CVE-2024-38856 (CVSS 9.8 Kritisch), die Versionen vor 18.12.13 betrifft. CVE-2024-38856 ist eine Path-Traversal-Schwachstelle [CWE-35], die die „Override View“-Funktion von OFBiz betrifft und nicht authentifizierten Angreifern eine Remote Code Execution (RCE) auf dem betroffenen System ermöglicht.

CVE-2024-38856 umgeht eine zuvor gepatchte Schwachstelle, CVE-2024-36104, die erst im Juni 2024 veröffentlicht wurde, was darauf hindeutet, dass die erste Korrektur das Problem nicht vollständig behoben hat. Dies baut auch auf einer anderen Sicherheitslücke in OFBiz aus dem Jahr 2024 auf, CVE-2024-32113 (CVSS 9.8 Kritisch), die ebenfalls aktiv zur Verbreitung des Mirai-Botnetzes ausgenutzt wurde. Schließlich wurden Anfang September 2024 zwei neue CVEs mit kritischem Schweregrad, CVE-2024-45507 und CVE-2024-45195 (CVSS 9.8 Kritisch), zur Liste der Bedrohungen hinzugefügt, die aktuelle Versionen von OFBiz betreffen.

Da aktive Exploits und PoC-Exploits (Proof of Concept) für CVE-2024-38856 [1][2] und CVE-2024-32113 [1][2] zur Verfügung stehen, müssen die Betroffenen dringend einen Patch installieren. Greenbone ist in der Lage, alle vorgenannten CVEs in Apache OFBiz sowohl mit aktiven als auch mit Versionsprüfungen zu erkennen.

CVE-2022-0185 im Linux-Kernel wird aktiv ausgenutzt

CVE-2022-0185 (CVSS 8.4 Hoch), eine Heap-Overflow-Schwachstelle im Linux-Kernel, wurde im August 2024 in die CISA KEV aufgenommen. Öffentlich verfügbarer PoC-Exploit-Code und detaillierte technische Beschreibungen der Schwachstelle haben zur Zunahme von Cyberangriffen unter Ausnutzung von CVE-2022-0185 beigetragen.

Bei CVE-2022-0185 wird in der Linux-Funktion „legacy_parse_param()“ innerhalb der Filesystem-Kontext-Funktionalität die Länge der übergebenen Parameter nicht ordnungsgemäß überprüft. Durch diesen Fehler kann ein nicht privilegierter lokaler User seine Privilegien auf den Root-User ausdehnen.

Greenbone konnte CVE-2022-0185 seit Offenlegung Anfang 2022 über Schwachstellen-Testmodule erkennen, die eine Vielzahl von Linux-Distributionen abdecken, darunter Red Hat, Ubuntu, SuSE, Amazon Linux, Rocky Linux, Fedora, Oracle Linux und Enterprise-Produkte wie IBM Spectrum Protect Plus.

Neue VoIP- und PBX-Schwachstellen

Im August 2024 wurden eine Handvoll CVEs veröffentlicht, die sich auf Sprachkommunikationssysteme in Unternehmen auswirken. Die Schwachstellen wurden in den VoIP-Systemen von Cisco für kleine Unternehmen und in Asterisk, einem beliebten Open-Source-PBX-Zweigstellensystem, aufgedeckt. Schauen wir uns die Einzelheiten an:

Cisco Small Business IP-Telefone mit RCE und DoS

Es wurden drei schwerwiegende Schwachstellen bekannt, die die Web-Management-Konsole der IP-Telefone der Cisco Small Business SPA300 Series und SPA500 Series betreffen. Diese Schwachstellen unterstreichen nicht nur, wie wichtig es ist, Management-Konsolen nicht dem Internet auszusetzen, sondern stellen auch einen Angriffsvektor für Insider oder ruhende Angreifer dar, die sich bereits Zugang zum Netzwerk eines Unternehmens verschafft haben, um ihre Angriffe auf höherwertige Vermögenswerte zu richten und den Geschäftsbetrieb zu stören.

Greenbone erkennt alle neu bekannt gewordenen CVEs in Cisco Small Business IP Phone. Hier eine kurze technische Beschreibung der einzelnen CVEs:

  • CVE-2024-20454 und CVE-2024-20450 (CVSS 9.8 Kritisch): Ein nicht authentifizierter Angreifer könnte remote beliebige Befehle auf dem zugrundeliegenden Betriebssystem mit Root-Rechten ausführen, da eingehende HTTP-Pakete nicht richtig auf ihre Größe geprüft werden, was zu einem Buffer Overflow führen kann.
  • CVE-2024-20451 (CVSS 7.5 Hoch): Ein nicht authentifizierter Angreifer kann remote ein betroffenes Gerät dazu bringen, unerwartet neu zu laden, was zu einem Denial of Service führt, da HTTP-Pakete nicht ordnungsgemäß auf ihre Größe überprüft werden.

CVE-2024-42365 in Asterisk PBX Telephonie-Toolkit

Asterisk ist eine Open-Source-Nebenstellenanlage (Private Branch Exchange; PBX) und ein Telefonie-Toolkit. PBX ist ein System zur Verwaltung der in- und externen Anrufweiterleitung und kann traditionelle Telefonleitungen (analog oder digital) oder VoIP (IP PBX) verwenden. CVE-2024-42365, veröffentlicht im August 2024, betrifft die Versionen von Asterisk vor 18.24.2, 20.9.2 und 21.4.2 sowie die zertifizierten Asterisk-Versionen 18.9-cert11 und 20.7-cert2. Auch wurde ein Exploit-Modul für das Metasploit-Framework veröffentlicht, das das Risiko noch erhöht. Eine aktive Ausnutzung in freier Wildbahn wurde jedoch noch nicht beobachtet.

Greenbone kann CVE-2024-42365 über Netzwerk-Scans erkennen. Hier eine kurze technische Beschreibung der Sicherheitslücke:

  • CVE-2024-42365 (CVSS 8.8 Hoch): Ein AMI-Benutzer mit „write=originate“ kann alle Konfigurationsdateien im Verzeichnis „/etc/asterisk/“ ändern. Er kann entfernte Dateien verkleinern und auf Festplatte schreiben, aber auch an bestehende Dateien anhängen, indem er die FILE-Funktion innerhalb der SET-Anwendung verwendet. Dieses Problem kann zu einer Privilegien-Erweiterung, Remote Code Execution oder zur Fälschung serverseitiger Requests mit beliebigen Protokollen führen.

Browser: eine ständige Bedrohung

CVE-2024-7971 und CVE-2024-7965, zwei neue Schwachstellen im Chrome-Browser mit hohem Schweregrad (CVSS 8.8), werden aktiv durch RCE ausgenutzt. Beide CVE können ausgelöst werden, wenn die Opfer dazu verleitet werden, einfach eine bösartige Webseite zu besuchen. Google räumt ein, dass der Exploit-Code öffentlich zugänglich ist, sodass auch wenig erfahrene Cyberkriminelle in der Lage sind, Angriffe zu starten. Für Google Chrome wurden in den letzten Jahren immer wieder neue Schwachstellen entdeckt und aktiv ausgenutzt. Ein kurzer Blick auf Mozilla Firefox zeigt einen ähnlichen kontinuierlichen Strom kritischer und schwerwiegender Sicherheitslücken; sieben kritische und sechs schwerwiegende Sicherheitslücken wurden im August 2024 in Firefox bekanntgegeben, obwohl keine aktive Ausnutzung dieser Schwachstellen gemeldet wurde.

Der ständige Ansturm auf Sicherheitslücken in den wichtigsten Browsern unterstreicht die Notwendigkeit, dafür zu sorgen, dass Updates installiert werden, sobald sie verfügbar sind. Aufgrund des hohen Marktanteils von Chrome von über 65 % (über 70 %, wenn man den auf Chromium basierenden Microsoft Edge berücksichtigt) erhalten die Schwachstellen dieses Browsers erhöhte Aufmerksamkeit von Cyberkriminellen. In Anbetracht der hohen Anzahl schwerwiegender Schwachstellen, die sich auf die V8-Engine von Chromium auswirken (bisher mehr als 40 im Jahr 2024), könnten Google Workspace-Administratoren in Erwägung ziehen, V8 für alle Nutzer in ihrer Organisation zu deaktivieren, um die Sicherheit zu erhöhen. Weitere Optionen zur Erhöhung der Browsersicherheit in Szenarien mit hohem Risiko sind die Verwendung von Remote-Browser-Isolierung, Netzwerksegmentierung und das Booten von sicheren Baseline-Images, um sicherzustellen, dass Endpunkte nicht gefährdet sind.

Greenbone umfasst aktive authentifizierte Schwachstellentests, um anfällige Versionen von Browsern für Linux, Windows und macOS zu identifizieren.

Zusammenfassung

Neue kritische und remote ausnutzbare Schwachstellen wurden in einem rekordverdächtigen Tempo inmitten eines brandgefährlichen Cyberrisiko-Umfelds aufgedeckt. Von IT-Sicherheitsteams zu verlangen, dass sie zusätzlich zur Anwendung von Patches neu entdeckte Schwachstellen manuell nachverfolgen, stellt eine unmögliche Belastung dar und birgt das Risiko, dass kritische Schwachstellen unentdeckt und somit ungeschützt bleiben. Schwachstellenmanagement gilt als grundlegende Cybersecurity-Aktivität; Verteidiger großer, mittlerer und kleiner Unternehmen müssen Tools wie Greenbone einsetzen, um Schwachstellen in der gesamten IT-Infrastruktur eines Unternehmens automatisch zu suchen und zu melden. 

Die Durchführung automatischer Netzwerkschwachstellen-Scans und authentifizierter Scans der Host-Angriffsfläche jedes Systems kann die Arbeitsbelastung der Verteidiger drastisch reduzieren, indem sie ihnen automatisch eine Liste von Abhilfemaßnahmen zur Verfügung stellt, die nach dem Schweregrad der Bedrohung sortiert werden kann.