Schlagwortarchiv für: Sicherheitslücken

In jedem Unternehmen gibt es geschäftskritische Aktivitäten. Sicherheitskontrollen sollen sie schützen und sicherstellen, dass der Geschäftsbetrieb und die strategischen Ziele auf Dauer aufrechterhalten werden. Ein Sicherheitskonzept nach dem Motto „Install and forget“ bietet wenig Gewähr für das Erreichen dieser Ziele. In einer sich ständig verändernden digitalen Landschaft kann eine Sicherheitslücke zu einem schwerwiegenden Datenverstoß führen. Ereignisse und Entwicklungen wie die Ausweitung von Privilegien, Server-Wildwuchs und Konfigurationsfehler häufen sich. Sicherheitsteams, die diese Ereignisse nicht ständig überwachen, entdecken sie nicht – Angreifer schon. Daher handelt es sich bei Cybersicherheits-Frameworks in der Regel um iterative Prozesse, die Überwachung, Audits und kontinuierliche Verbesserungen umfassen.

Sicherheitsverantwortliche sollten sich fragen: Was muss unser Unternehmen messen, um eine hohe Sicherheit zu erlangen und sie kontinuierlich zu verbessern? In diesem Artikel werden wir Ihnen eine Begründung für Key Performance Indicators (KPI) in der Cybersicherheit geben, die von Branchenführern wie dem NIST und dem SANS Institute dargelegt werden, und einen Kernsatz von KPIs für das Schwachstellenmanagement definieren. Die grundlegenden KPIs, die hier behandelt werden, können als Ausgangspunkt für Unternehmen dienen, die ein einfaches Schwachstellenmanagement-Programm einführen, während die fortschrittlicheren Maßnahmen Unternehmen, die bereits über ein ausgereiftes Schwachstellenmanagement verfügen, mehr Transparenz bieten.

Wie KPIs die Cybersicherheit unterstützen

Leistungskennzahlen (KPIs) werden durch das Sammeln und Analysieren relevanter Leistungsdaten generiert und werden hauptsächlich für zwei strategische Ziele verwendet. Das erste ist die Erleichterung evidenzbasierter Entscheidungsfindung. Beispielsweise können KPIs helfen, die Leistung von Programmen zum Schwachstellenmanagement zu bewerten, um das Gesamtniveau der Risikominderung zu beurteilen und zu entscheiden, ob mehr Ressourcen zugewiesen oder der Status quo akzeptiert werden soll. Das zweite strategische Kernziel, das KPIs unterstützen, ist die Rechenschaftspflicht für Sicherheitsaktivitäten. KPIs können helfen, die Ursachen für eine schlechte Leistung zu ermitteln und eine Frühwarnung über unzureichende oder schlecht implementierte Sicherheitskontrollen auszusenden. Mit einer angemessenen Überwachung der Leistung des Schwachstellenmanagements kann die Wirksamkeit bestehender Verfahren bewertet werden, sodass diese angepasst oder durch zusätzliche Kontrollen ergänzt werden können. Die bei der Erstellung von KPIs gesammelten Nachweise können auch dazu verwendet werden, die Einhaltung interner Richtlinien, verbindlicher oder freiwilliger Cybersicherheitsstandards oder geltender Gesetze und Vorschriften nachzuweisen, indem die Aktivitäten des Cybersicherheitsprogramms belegt werden.

Der Umfang der Messung von KPIs kann unternehmensweit sein oder sich auf Abteilungen oder Infrastrukturen konzentrieren, die für den Geschäftsbetrieb entscheidend sind. Dieser Umfang kann auch angepasst werden, wenn ein Cybersicherheitsprogramm ausgereift ist. In der Anfangsphase eines Schwachstellenmanagements stehen möglicherweise nur grundlegende Informationen zur Verfügung, aus denen KPI-Metriken erstellt werden können. Mit zunehmender Reife eines Programms wird die Datenerfassung jedoch robuster und ermöglicht komplexere KPI-Metriken. Fortgeschrittenere Maßnahmen können auch gerechtfertigt sein, um für Organisationen mit erhöhtem Risiko eine hohe Sichtbarkeit zu erreichen.

Arten von Cybersicherheitsmaßnahmen

NIST SP 800-55 V1 (und sein Vorgänger NIST SP 800-55 r2) konzentriert sich auf die Entwicklung und Erfassung von drei Arten von Maßnahmen:

  • Implementierungsmaßnahmen: Diese messen die Umsetzung der Sicherheitsrichtlinien und den Fortschritt der Implementierung. Beispiele hierfür sind: die Gesamtzahl der gescannten Informationssysteme und der Prozentsatz der kritischen Systeme, die auf Schwachstellen gescannt wurden.
  • Maßnahmen zur Effektivität/Effizienz: Diese messen die Ergebnisse von Sicherheitsaktivitäten und überwachen Prozesse auf Programm- und Systemebene. So lässt sich feststellen, ob die Sicherheitskontrollen korrekt implementiert sind, wie beabsichtigt funktionieren und zu den gewünschten Ergebnissen führen. Zum Beispiel der prozentuale Anteil aller identifizierten kritischen Schwachstellen, die in der gesamten betrieblich kritischen Infrastruktur entschärft wurden.
  • Auswirkungsmessungen: Diese messen die geschäftlichen Auswirkungen von Sicherheitsaktivitäten wie Kosteneinsparungen, Kosten, die durch die Behebung von Sicherheitsschwachstellen entstehen, oder andere geschäftsbezogene Auswirkungen der Informationssicherheit.

Wichtige Leistungsindikatoren für das Schwachstellenmanagement

Da es beim Schwachstellenmanagement im Wesentlichen darum geht, bekannte Schwachstellen zu erkennen und zu beheben, sind KPIs, die Aufschluss über die Erkennung und Behebung bekannter Bedrohungen geben, am besten geeignet. Zusätzlich zu diesen beiden Schlüsselbereichen kann die Bewertung der Effektivität eines bestimmten Schwachstellenmanagement-Tools helfen, verschiedene Produkte zu vergleichen. Da dies die logischsten Möglichkeiten zur Bewertung von Schwachstellenmanagement-Aktivitäten sind, gruppiert unsere Liste die KPIs in diese drei Kategorien. Zu jedem Element wurden außerdem Tags hinzugefügt, die angeben, welchen in NIST SP 800-55 spezifizierten Zweck die Metrik erfüllt.

Die Liste ist zwar nicht vollständig, enthält jedoch einige wichtige KPIs für das Schwachstellenmanagement:

Leistungsmetriken für die Erkennung

  • Scan-Abdeckung (Implementierung): Hier wird der prozentuale Anteil der gesamten Anlagen einer Organisation gemessen, die auf Schwachstellen gescannt werden. Die Scan-Abdeckung ist besonders in den frühen Phasen der Programmimplementierung wichtig, um Ziele festzulegen und die sich entwickelnde Reife des Programms zu messen. Der Scan-Abdeckungsgrad kann auch verwendet werden, um Lücken in der IT-Infrastruktur eines Unternehmens zu identifizieren, die nicht gescannt werden und somit ein erhöhtes Risiko darstellen.
  • Mean Time to Detect (MTTD) (Effizienz): Damit wird die durchschnittliche Zeitspanne zwischen der ersten Veröffentlichung von Informationen und der Erkennung von Schwachstellen durch eine Sicherheitskontrolle gemessen. Die MTTD kann verbessert werden, indem die Häufigkeit der Aktualisierung der Module eines Schwachstellen-Scanners oder die Häufigkeit der Durchführung von Scans angepasst wird.
  • Verhältnis der nicht identifizierten Schwachstellen (Wirksamkeit): Das Verhältnis zwischen den proaktiv durch Scans identifizierten Schwachstellen und den Schwachstellen, die durch Post-Mortem-Analysen von Sicherheitsverletzungen oder Vorfällen entdeckt wurden. Ein höheres Verhältnis deutet auf bessere proaktive Erkennungsfähigkeiten hin.
  • Automatisierte Entdeckungsrate (Effizienz): Diese Kennzahl misst den Prozentsatz der Schwachstellen, die durch automatisierte Tools im Vergleich zu manuellen Erkennungsmethoden identifiziert werden. Eine höhere Automatisierung kann zu einer konsistenteren und schnelleren Erkennung führen.

Metriken zur Behebungsleistung

  • Mean Time to Remediate (MTTR; Effizienz): Damit wird die durchschnittliche Zeit gemessen, die für die Behebung von Schwachstellen nach deren Entdeckung benötigt wird. Durch die Verfolgung der Behebungszeiten können Unternehmen ihre Reaktionsfähigkeit auf Sicherheitsbedrohungen messen und das Risiko, das durch die Expositionszeit entsteht, bewerten. Eine kürzere MTTR deutet in der Regel auf einen agileren Sicherheitsbetrieb hin.
  • Remediation Coverage (Wirksamkeit): Diese Kennzahl gibt den Anteil der entdeckten Schwachstellen an, die erfolgreich behoben wurden, und dient als wichtiger Indikator für die Wirksamkeit bei der Behebung erkannter Sicherheitsrisiken. Der Abdeckungsgrad bei der Behebung kann so angepasst werden, dass er speziell die Rate der Schließung kritischer oder schwerwiegender Sicherheitslücken widerspiegelt. Indem sich die Sicherheitsteams zuerst auf die gefährlichsten Schwachstellen konzentrieren, können sie das Risiko effektiver minimieren.
  • Risikoscore-Reduktion (Auswirkung): Diese Kennzahl spiegelt die Gesamtauswirkungen der Schwachstellenmanagement-Aktivitäten auf das Risiko wider. Durch die Überwachung von Änderungen des Risikowertes lässt sich beurteilen, wie gut die Bedrohung durch exponierte Schwachstellen gehandhabt wird. Die Verringerung des Risiko-Scores wird in der Regel mit Hilfe von Risikobewertungs-Tools berechnet, die eine kontextbezogene Ansicht der einzigartigen IT-Infrastruktur und des Risikoprofils eines jeden Unternehmens bieten.
  • Konformitätsrate (Auswirkung): Diese Kennzahl gibt den Prozentsatz der Systeme an, die bestimmte Cybersicherheitsvorschriften, Standards oder interne Richtlinien einhalten. Sie ist ein wichtiges Maß für die Beurteilung des Konformitätsstatus und liefert verschiedenen Interessengruppen einen Nachweis über diesen Status. Sie dient auch als Warnung, wenn die Compliance-Anforderungen nicht erfüllt werden, wodurch das Risiko von Strafen verringert und die in den Compliance-Vorgaben vorgesehene Sicherheitslage gewährleistet wird.
  • Wiederöffnungsrate von Schwachstellen (Effizienz): Diese Kennzahl misst den Prozentsatz der Schwachstellen, die wieder geöffnet werden, nachdem sie als behoben markiert wurden. Die Wiederöffnungsrate gibt Aufschluss über die Effizienz der Abhilfemaßnahmen. Im Idealfall wird für die Schwachstelle kein weiteres Ticket ausgestellt, sobald ein Problembehebungs-Ticket geschlossen wurde.
  • Kosten der Behebung (Auswirkung): Diese Kennzahl misst die Gesamtkosten, die mit der Behebung erkannter Schwachstellen verbunden sind, und umfasst sowohl direkte als auch indirekte Ausgaben. Die Kostenanalyse kann Entscheidungen zur Budgetierung und Ressourcenzuweisung unterstützen, indem sie den Zeit- und Ressourcenaufwand für die Erkennung und Behebung von Schwachstellen erfasst.

Metriken zur Effektivität von Schwachstellenscannern

  • True-Positive-Erkennungsrate (Wirksamkeit): Sie misst den Prozentsatz der Schwachstellen, die von einem bestimmten Tool genau erkannt werden können. Diese Rate zielt auf die effektive Abdeckung eines Schwachstellen-Scanning-Tools und ermöglicht den Vergleich zweier Schwachstellen-Scanning-Produkte anhand ihres relativen Werts.
  • False-Positive-Erkennungsrate (Effektivität): Diese Metrik misst die Häufigkeit, mit der ein Tool fälschlicherweise nicht vorhandene Schwachstellen als vorhanden identifiziert. Dies kann zu einer Verschwendung von Ressourcen führen. Anhand dieser Rate kann die Zuverlässigkeit eines Schwachstellen-Scanning-Tools gemessen werden, um sicherzustellen, dass es mit den betrieblichen Anforderungen übereinstimmt.

Erkenntnisse

Durch die Erstellung und Analyse von Leistungsindikatoren (KPIs) können Unternehmen die grundlegenden Anforderungen an die Cybersicherheit für eine kontinuierliche Überwachung und Verbesserung erfüllen. KPIs unterstützen außerdem zentrale Geschäftsstrategien wie evidenzbasierte Entscheidungsfindung und Rechenschaftspflicht.

Mit quantitativen Einblicken in Schwachstellenmanagement-Prozesse können Unternehmen ihre Fortschritte besser einschätzen und ihre Cybersicherheitsrisiken genauer bewerten. Durch die Zusammenstellung geeigneter KPIs können Unternehmen den Reifegrad ihrer Schwachstellenmanagement-Aktivitäten nachverfolgen, Lücken in den Kontrollen, Richtlinien und Verfahren erkennen, die die Effektivität und Effizienz ihrer Schwachstellenbeseitigung einschränken, und die Übereinstimmung mit den internen Risikoanforderungen und den relevanten Sicherheitsstandards, Gesetzen und Vorschriften sicherstellen.

Referenzen

National Institute of Standards and Technology. Measurement Guide for Information Security: Volume 1 — Identifying and Selecting Measures. NIST, January 2024, https://csrc.nist.gov/pubs/sp/800/55/v1/ipd

National Institute of Standards and Technology. Performance Measurement Guide for Information Security, Revision 2. NIST, November 2022, https://csrc.nist.gov/pubs/sp/800/55/r2/iwd

National Institute of Standards and Technology. Assessing Security and Privacy Controls in Information Systems and Organizations Revision 5. NIST, January 2022, https://csrc.nist.gov/pubs/sp/800/53/a/r5/final

National Institute of Standards and Technology. Guide for Conducting Risk Assessments Revision 1. NIST, September 2012, https://csrc.nist.gov/pubs/sp/800/30/r1/final

National Institute of Standards and Technology. Guide to Enterprise Patch Management Planning: Preventive Maintenance for Technology Revision 4. NIST, April 2022, https://csrc.nist.gov/pubs/sp/800/40/r4/final

SANS Institute. A SANS 2021 Report: Making Visibility Definable and Measurable. SANS Institute, June 2021, https://www.sans.org/webcasts/2021-report-making-visibility-definable-measurable-119120/

SANS Institute. A Guide to Security Metrics. SANS Institute, June 2006, https://www.sans.org/white-papers/55/

IT-Sicherheitsteams müssen nicht unbedingt wissen, was CSAF ist, aber andererseits kann die Kenntnis dessen, was „unter der Haube“ einer Schwachstellenmanagement-Plattform passiert, einen Kontext dafür liefern, wie sich das Schwachstellenmanagement der nächsten Generation entwickelt und welche Vorteile ein automatisiertes Schwachstellenmanagement hat. In diesem Artikel geben wir eine Einführung in CSAF 2.0, was es ist und wie es das Schwachstellenmanagement in Unternehmen verbessern soll.

Die Greenbone AG ist offizieller Partner des Bundesamtes für Sicherheit in der Informationstechnik (BSI) bei der Integration von Technologien, die den CSAF 2.0 Standard für automatisierte Cybersecurity Advisories nutzen.

Was ist CSAF?

Das Common Security Advisory Framework (CSAF) 2.0 ist ein standardisiertes, maschinenlesbares Format für Hinweise auf Sicherheitslücken. CSAF 2.0 ermöglicht es der vorgelagerten Cybersecurity Intelligence Community, einschließlich Software- und Hardware-Anbietern, Regierungen und unabhängigen Forschern, Informationen über Schwachstellen bereitzustellen. Nachgelagert ermöglicht CSAF den Nutzern von Schwachstelleninformationen, Sicherheitshinweise von einer dezentralen Gruppe von Anbietern zu sammeln und die Risikobewertung mit zuverlässigeren Informationen und weniger Ressourcenaufwand zu automatisieren.

Durch die Bereitstellung eines standardisierten, maschinenlesbaren Formats stellt CSAF eine Entwicklung hin zu einem automatisierten Schwachstellenmanagement der nächsten Generation dar, das die Belastung der IT-Sicherheitsteams, die mit einer ständig wachsenden Zahl von CVE-Enthüllungen konfrontiert sind, verringern und die risikobasierte Entscheidungsfindung angesichts eines Ad-hoc-Ansatzes beim Austausch von Schwachstelleninformationen verbessern kann.

CSAF 2.0 ist der Nachfolger des Common Vulnerability Reporting Framework (CVRF) v1.2 und erweitert die Möglichkeiten seines Vorgängers, um mehr Flexibilität zu bieten.

Hier sind die wichtigsten Erkenntnisse:

  • CSAF ist ein internationaler offener Standard für maschinenlesbare Dokumente mit Hinweisen auf Schwachstellen, der die Markup-Sprache JSON verwendet.
  • Die CSAF-Aggregation ist ein dezentralisiertes Modell zur Verteilung von Schwachstelleninformationen.
  • CSAF 2.0 wurde entwickelt, um ein automatisiertes Schwachstellenmanagement der nächsten Generation in Unternehmen zu ermöglichen.

Der traditionelle Prozess des Schwachstellenmanagements

Der traditionelle Prozess der Schwachstellenverwaltung ist für große Unternehmen mit komplexen IT-Umgebungen ein schwieriger Prozess. Die Anzahl der CVEs, die in jedem Patch-Zyklus veröffentlicht werden, steigt in einem unkontrollierbaren Tempo [1][2]. Bei einem herkömmlichen Schwachstellenmanagementprozess sammeln IT-Sicherheitsteams Schwachstelleninformationen manuell über Internetrecherchen. Auf diese Weise ist der Prozess mit einem hohen manuellen Aufwand für das Sammeln, Analysieren und Organisieren von Informationen aus einer Vielzahl von Quellen und Ad-hoc-Dokumenten Formaten verbunden.

Zu diesen Quellen gehören in der Regel:

  • Datenbanken zur Verfolgung von Schwachstellen wie NIST NVD
  • Sicherheitshinweise der Produktanbieter
  • Nationale und internationale CERT-Beratungen
  • Bewertungen der CVE-Nummerierungsbehörde (CNA)
  • Unabhängige Sicherheitsforschung
  • Plattformen für Sicherheitsinformationen
  • Code-Datenbanken ausnutzen

Das letztendliche Ziel, eine fundierte Risikobewertung durchzuführen, kann während dieses Prozesses auf verschiedene Weise vereitelt werden. Empfehlungen, selbst die des Produktanbieters, sind oft unvollständig und werden in einer Vielzahl nicht standardisierter Formate geliefert. Dieser Mangel an Kohärenz erschwert eine datengestützte Entscheidungsfindung und erhöht die Fehlerwahrscheinlichkeit.

Lassen Sie uns kurz die bestehende Informationspipeline für Schwachstellen sowohl aus der Sicht der Ersteller als auch der Verbraucher betrachten:

Der Prozess der Offenlegung von Schwachstellen

Die in der National Vulnerability Database (NVD) des NIST (National Institute of Standards and Technology) veröffentlichten CVE-Datensätze (Common Vulnerability and Exposure) stellen das weltweit zentralste globale Repository für Schwachstelleninformationen dar. Im Folgenden finden Sie einen Überblick darüber, wie der Prozess der Offenlegung von Schwachstellen funktioniert:

  1. Produktanbieter werden durch ihre eigenen Sicherheitstests oder durch unabhängige Sicherheitsforscher auf eine Sicherheitslücke aufmerksam und setzen damit eine interne Richtlinie zur Offenlegung von Sicherheitslücken in Gang. In anderen Fällen können unabhängige Sicherheitsforscher direkt mit einer CVE Numbering Authority (CNA) zusammenarbeiten, um die Schwachstelle ohne vorherige Rücksprache mit dem Produktanbieter zu veröffentlichen.
  2. Schwachstellen-Aggregatoren wie NIST NVD und nationale CERTs erstellen eindeutige Tracking-IDs (z. B. eine CVE-ID) und fügen die gemeldete Schwachstelle einer zentralen Datenbank hinzu, in der Produktanwender und Schwachstellenmanagement-Plattformen wie Greenbone die Fortschritte verfolgen können.
  3. Verschiedene Interessengruppen wie der Produkthersteller, NIST NVD und unabhängige Forscher veröffentlichen Hinweise, die Informationen zu Abhilfemaßnahmen, voraussichtliche Termine für offizielle Patches, eine Liste der betroffenen Produkte, CVSS-Auswirkungsbewertungen und Schweregrade, Common Platform Enumeration (CPE) oder Common Weakness Enumeration (CWE) enthalten können, aber nicht müssen.
  4. Andere Anbieter von Informationen über Cyber-Bedrohungen, wie z. B. Known Exploited Vulnerabilities (KEV) von CISA und Exploit Prediction Scoring System (EPSS) von First.org, liefern zusätzlichen Risikokontext.

Der Prozess des Schwachstellenmanagements

Die Produktanwender sind für die Aufnahme von Schwachstelleninformationen und deren Anwendung verantwortlich, um das Risiko einer Ausnutzung zu mindern. Hier ein Überblick über den traditionellen Prozess des Schwachstellenmanagements in Unternehmen:

  1. Produktanwender müssen CVE-Datenbanken manuell durchsuchen und die Sicherheitshinweise überwachen, die ihre Software- und Hardware-Assets betreffen, oder eine Schwachstellenmanagement-Plattform wie Greenbone nutzen, die automatisch die verfügbaren Ad-hoc-Bedrohungshinweise zusammenfasst.
  2. Die Produktnutzer müssen die verfügbaren Informationen mit ihrem IT-Bestand abgleichen. Dies beinhaltet in der Regel die Pflege eines Bestandsverzeichnisses und die Durchführung eines manuellen Abgleichs oder die Verwendung eines Produkts zum Scannen von Schwachstellen, um den Prozess der Erstellung eines Bestandsverzeichnisses und der Durchführung von Schwachstellentests zu automatisieren.
  3. Die IT-Sicherheitsteams ordnen die entdeckten Schwachstellen nach dem kontextbezogenen Risiko für kritische IT-Systeme, Geschäftsabläufe und in einigen Fällen für die öffentliche Sicherheit.
  4. Die Ausbesserungen werden entsprechend der endgültigen Risikobewertung und den verfügbaren Ressourcen zugewiesen.

Was ist falsch am traditionellen Schwachstellenmanagement?

Herkömmliche oder manuelle Verfahren zur Verwaltung von Schwachstellen sind in der Praxis komplex und nicht effizient. Abgesehen von den operativen Schwierigkeiten bei der Implementierung von Software-Patches behindert der Mangel an zugänglichen und zuverlässigen Informationen die Bemühungen um eine wirksame Sichtung und Behebung von Schwachstellen. Die alleinige Verwendung von CVSS zur Risikobewertung wurde ebenfalls kritisiert [1][2], da es an ausreichendem Kontext für eine solide risikobasierte Entscheidungsfindung mangelt. Obwohl Plattformen zur Verwaltung von Schwachstellen wie z. B. Greenbone die Belastung der IT-Sicherheitsteams erheblich verringern, ist der Gesamtprozess immer noch häufig von geplagt von einer zeitaufwändigen manuellen Zusammenstellung von Ad-hoc-Hinweisen auf Schwachstellen, die unvollständige Informationen zur Folge haben kann.

Vor allem angesichts der ständig wachsenden Zahl von Schwachstellen besteht die Gefahr, dass die Zusammenstellung von Ad-hoc-Sicherheitsinformationen zu langsam ist und zu mehr menschlichen Fehlern führt, wodurch die Zeit für die Aufdeckung von Schwachstellen verlängert und die risikobasierte Priorisierung von Schwachstellen erschwert wird.

Fehlende Standardisierung führt zu Ad-hoc-Intelligenz

Dem derzeitigen Verfahren zur Offenlegung von Schwachstellen fehlt eine formale Methode zur Unterscheidung zwischen zuverlässigen Informationen von Anbietern und Informationen, die von beliebigen unabhängigen Sicherheitsforschern wie den Partner-CNAs bereitgestellt werden. Tatsächlich wirbt die offizielle CVE-Website selbst für die niedrigen Anforderungen, die für eine CNA-Mitgliedschaft gelten. Dies führt dazu, dass eine große Anzahl von CVEs ohne detaillierten Kontext herausgegeben wird, was eine umfangreiche manuelle Anreicherung im nachgelagerten Bereich erzwingt.

Welche Informationen aufgenommen werden, liegt im Ermessen des CNA, und es gibt keine Möglichkeit, die Zuverlässigkeit der Informationen zu klassifizieren. Ein einfaches Beispiel für dieses Problem ist, dass die betroffenen Produkte in einem Ad-hoc-Hinweis oft mit einer Vielzahl von Deskriptoren angegeben werden, die manuell interpretiert werden müssen. Zum Beispiel:

  • Version 8.0.0 – 8.0.1
  • Version 8.1.5 und höher
  • Version <= 8.1.5
  • Versionen vor 8.1.5
  • Alle Versionen < V8.1.5
  • 0, V8.1, V8.1.1, V8.1.2, V8.1.3, V8.1.4, V8.1.5

Skalierbarkeit

Da Anbieter, Prüfer (CNAs) und Aggregatoren verschiedene Verteilungsmethoden und Formate für ihre Hinweise verwenden, wird die Herausforderung der effizienten Verfolgung und Verwaltung von Schwachstellen operativ komplex und schwer zu skalieren. Darüber hinaus verschlimmert die zunehmende Offenlegung von Schwachstellen die manuellen Prozesse, überfordert die Sicherheitsteams und erhöht das Risiko von Fehlern oder Verzögerungen bei den Abhilfemaßnahmen.

Schwierige Bewertung des Risikokontextes

NIST SP 800-40r4 „Guide to Enterprise Patch Management Planning“ Abschnitt 3 empfiehlt die Anwendung von Schwachstellen-Metriken auf Unternehmensebene. Da das Risiko letztlich vom Kontext jeder Schwachstelle abhängt – Faktoren wie betroffene Systeme, potenzielle Auswirkungen und Ausnutzbarkeit -, stellt die derzeitige Umgebung mit Ad-hoc-Sicherheitsinformationen ein erhebliches Hindernis für ein solides risikobasiertes Schwachstellenmanagement dar.

Wie löst CSAF 2.0 diese Probleme?

Bei den CSAF-Dokumenten handelt es sich um wichtige Hinweise zu Cyber-Bedrohungen, mit denen die Lieferkette für Schwachstelleninformationen optimiert werden kann. Anstatt Ad-hoc-Schwachstellendaten manuell zu sammeln, können Produktanwender maschinenlesbare CSAF-Hinweise aus vertrauenswürdigen Quellen automatisch in einem Advisory Management System zusammenführen, das die Kernfunktionen des Schwachstellenmanagements wie Asset-Matching und Risikobewertung kombiniert. Auf diese Weise zielt die Automatisierung von Sicherheitsinhalten mit CSAF darauf ab, die Herausforderungen des traditionellen Schwachstellenmanagements durch die Bereitstellung zuverlässigerer und effizienterer Sicherheitsinformationen zu bewältigen und das Potenzial für das Schwachstellenmanagement der nächsten Generation zu schaffen.

CSAF 2.0 löst die Probleme des traditionellen Schwachstellenmanagements auf folgende Weise:

Zuverlässigere Sicherheitsinformationen

CSAF 2.0 behebt das Problem der Ad-hoc-Sicherheitsinformationen, indem es mehrere Aspekte der Offenlegung von Sicherheitslücken standardisiert. So erlauben die Felder zur Angabe der betroffenen Version standardisierte Daten wie Version Range Specifier (vers), Common Platform Enumeration (CPE), Paket-URL-Spezifikation, CycloneDX SBOM sowie den allgemeinen Produktnamen, die Seriennummer, die Modellnummer, die SKU oder den File-Hash zur Identifizierung betroffener Produktversionen.

Neben der Standardisierung von Produktversionen unterstützt CSAF 2.0 auch den Austausch von Schwachstellen (Vulnerability Exploitability eXchange, VEX), mit dem Produkthersteller, vertrauenswürdige CSAF-Anbieter oder unabhängige Sicherheitsforscher explizit den Status der Produktbehebung angeben können. VEX liefert Produktanwendern Empfehlungen für Abhilfemaßnahmen.

Die expliziten VEX-Status-Deklarationen sind:

  • Nicht betroffen: Es sind keine Abhilfemaßnahmen bezüglich einer Schwachstelle erforderlich.
  • Betroffen: Es werden Maßnahmen empfohlen, um eine Schwachstelle zu beheben oder zu beseitigen.
  • Behoben: Bedeutet, dass diese Produktversionen einen Fix für eine Sicherheitslücke enthalten.
  • Wird untersucht: Es ist noch nicht bekannt, ob diese Produktversionen von einer Sicherheitslücke betroffen sind. Ein Update wird in einer späteren Version zur Verfügung gestellt.

Effektivere Nutzung von Ressourcen

CSAF ermöglicht mehrere vor- und nachgelagerte Optimierungen des traditionellen Schwachstellenmanagement-Prozesses. Die OASIS CSAF 2.0-Dokumentation enthält Beschreibungen mehrerer Konformitätsziele, die es Cybersecurity-Administratoren ermöglichen, ihre Sicherheitsabläufe zu automatisieren und so ihre Ressourcen effizienter zu nutzen.

Hier sind einige Zielvorgaben für die Einhaltung der Vorschriften, auf die im CSAF 2.0 die eine effektivere Nutzung von Ressourcen über den traditionellen Prozess des Schwachstellenmanagements hinaus unterstützen:

  • Advisory Management System: Ein Softwaresystem, das Daten verarbeitet und CSAF-2.0-konforme Beratungsdokumente erstellt. Es ermöglicht den CSAF-Produktionsteams, die Qualität der zu einem bestimmten Zeitpunkt eingehenden Daten zu bewerten, sie zu überprüfen, zu konvertieren und als gültige CSAF-2.0-Sicherheitshinweise zu veröffentlichen. Auf diese Weise können CSAF-Produzenten die Effizienz ihrer Informationspipeline optimieren und gleichzeitig sicherstellen, dass korrekte Hinweise veröffentlicht werden.
  • CSAF Management System: Ein Programm, das CSAF-Dokumente verwalten kann und in der Lage ist, deren Details gemäß den Anforderungen des CSAF-Viewers anzuzeigen. Auf der grundlegendsten Ebene ermöglicht dies sowohl den vorgelagerten Produzenten als auch den nachgelagerten Konsumenten von Sicherheitshinweisen, deren Inhalt in einem für Menschen lesbaren Format zu betrachten.
  • CSAF Asset Matching System / SBOM Matching System: Ein Programm, das mit einer Datenbank von IT-Assets, einschließlich Software Bill of Materials (SBOM), integriert wird und Assets mit allen CSAF-Hinweisen abgleichen kann. Ein Asset-Matching-System dient dazu, einem Unternehmen, das CSAF nutzt, Einblick in seine IT-Infrastruktur zu verschaffen, festzustellen, wo anfällige Produkte vorhanden sind, und optimale Informationen zur automatischen Risikobewertung und -behebung zu liefern.
  • Technisches System: Eine Softwareanalyse-Umgebung, in der Analysewerkzeuge ausgeführt werden. Ein Engineering-System kann ein Build-System, ein Versionskontrollsystem, ein Ergebnisverwaltungssystem, ein Fehlerverfolgungssystem, ein Testausführungssystem usw. umfassen.

Dezentralisierte Cybersicherheitsinformationen

Der kürzlich verkündete Ausfall des CVE-Anreicherungsprozesses der NIST National Vulnerability Database (NVD) zeigt, wie riskant es sein kann, sich auf eine einzige Quelle für Schwachstelleninformationen zu verlassen. CSAF ist dezentralisiert und ermöglicht es nachgelagerten Nutzern von Schwachstellen, Informationen aus einer Vielzahl von Quellen zu beziehen und zu integrieren. Dieses dezentralisierte Modell des Informationsaustauschs ist widerstandsfähiger gegen den Ausfall eines Informationsanbieters, während die Last der Anreicherung von Schwachstellen effektiver auf eine größere Anzahl von Beteiligten verteilt wird.

Anbieter von IT-Produkten für Unternehmen wie RedHat und Cisco haben bereits ihre eigenen CSAF- und VEX-Feeds erstellt, während staatliche Cybersicherheitsbehörden und nationale CERT-Programme wie das deutsche Bundesamt für Sicherheit in der Informationstechnik (BSI) und die US-amerikanische Cybersecurity & Infrastructure Security Agency (CISA) ebenfalls CSAF-2.0-Austauschfunktionen entwickelt haben. 

Das dezentralisierte Modell ermöglicht es auch, dass sich mehrere Interessengruppen zu einer bestimmten Schwachstelle äußern, so dass die nachgeschalteten Verbraucher mehr Informationen über eine Schwachstelle erhalten. Mit anderen Worten: Eine Informationslücke in einem Gutachten kann von einem alternativen Hersteller geschlossen werden, der die genaueste Bewertung oder spezialisierte Analyse liefert.

Verbesserte Risikobewertung und Priorisierung von Schwachstellen

Insgesamt tragen die Vorteile des CSAF 2.0 zu einer genaueren und effizienteren Risikobewertung, Priorisierung und Abhilfemaßnahmen bei. Produktanbieter können direkt verlässliche VEX-Hinweise veröffentlichen, die Entscheidungsträgern im Bereich Cybersicherheit zeitnahe und vertrauenswürdige Informationen zu Abhilfemaßnahmen liefern. Außerdem dient das aggregierte Schweregradobjekt (aggregate_severity) in CSAF 2.0 als Vehikel, um verlässliche Dringlichkeits- und Kritikalitätsinformationen für eine Gruppe von Schwachstellen zu übermitteln, was eine einheitlichere Risikoanalyse und eine datengesteuerte Priorisierung von Abhilfemaßnahmen ermöglicht und die Expositionszeit kritischer Schwachstellen verkürzt.

Zusammenfassung

Herkömmliche Verfahren zum Management von Schwachstellen leiden unter mangelnder Standardisierung, was zu Problemen bei der Zuverlässigkeit und Skalierbarkeit führt und die Bewertung des Risikokontexts sowie die Fehlerwahrscheinlichkeit erschwert.

Das Common Security Advisory Framework (CSAF) 2.0 zielt darauf ab, den bestehenden Prozess des Schwachstellenmanagements zu revolutionieren, indem es eine zuverlässigere, automatisierte Sammlung von Schwachstelleninformationen ermöglicht. Durch die Bereitstellung eines standardisierten, maschinenlesbaren Formats für den Austausch von Schwachstelleninformationen im Bereich der Cybersicherheit und die Dezentralisierung ihrer Quelle versetzt CSAF 2.0 Organisationen in die Lage, zuverlässigere Sicherheitsinformationen zu nutzen, um ein genaueres, effizienteres und konsistenteres Schwachstellenmanagement zu erreichen.

Die Greenbone AG ist offizieller Partner des Bundesamtes für Sicherheit in der Informationstechnik (BSI) bei der Integration von Technologien, die den CSAF 2.0 Standard für automatisierte Cybersecurity Advisories nutzen.

Kontakt Kostenlos testen Hier kaufen Zurück zur Übersicht

Noch in keinem Jahr zuvor waren 3.000 CVEs (Common Vulnerabilities and Exposures) in einem einzigen Monat veröffentlicht worden. Das Jahr 2024 reihte bisher einen rekordverdächtigen Monat an den nächsten hinsichtlich der Anzahl gefundener Sicherheitslücken; im Mai 2024 wurden über 5.000 CVEs publik. Auch wenn der Juni eine Verschnaufpause vom „Schwachstellen-Sturm“ bot, werden sich viele fragen, ob die Bereitstellung von sicherer Software schlicht zu kompliziert ist. Selbst Anbieter mit dem größten Kapital und Marktanteil – Apple, Google, Microsoft – und Anbieter von Netzwerk- und Sicherheitsanwendungen für Unternehmen – Cisco, Citrix, Fortinet, Ivanti, Juniper, PaloAlto – haben mittlerweile dauerhaft unsichere Produkte auf den Markt gebracht. Welche unüberwindbaren Hürden stehen einer stärkeren Anwendungssicherheit im Wege? Sind sichere Softwareprodukte ein Ding der Unmöglichkeit?

Gemeinhin wird angenommen, dass, wer als Erster mit neuen Funktionen auf den Markt kommt, einen entscheidenden Wettbewerbsvorteil erhält. Sicherheit rangiert dabei am unteren Rand der Prioritätenliste. Andere Gedanken dazu sind eher konspirativ. Der Cyber Resilience Act [1][2], der Ende 2027 in Kraft treten soll, könnte mehr Verantwortlichkeit schaffen, liegt aber zeitlich noch in weiter Ferne. Cyber-Verteidiger müssen wachsam bleiben, bewährte Verfahren zur Cybersicherheit anwenden, Sicherheitslücken proaktiv aufspüren und sie rechtzeitig beheben. Das ist leicht gesagt, aber in der Tat eine ungeheure Leistung.

In der Juni-Ausgabe des Greebone Threat Tracking werden wir uns mit einem aktuellen Trend befassen: der zunehmenden Ausnutzung von Edge-Netzwerkgeräten.

Edge-Geräte: heiße Ziele für Cyberangriffe

Cyber-Bedrohungsakteure nutzen zunehmend Schwachstellen in Diensten und Geräten am Netzwerk-Rand aus. Der Netzwerkperimeter ist die Grenze, die das interne Netzwerk eines Unternehmens von externen Netzen wie dem Internet trennt und in der Regel wichtige Sicherheitsinfrastrukturen wie VPNs, Firewalls und Edge-Computing-Dienste beherbergt. Diese Ansammlung von Diensten am Netzwerk-Rand wird oft als demilitarisierte Zone (DMZ) bezeichnet. Perimeter-Dienste dienen als idealer Einstiegspunkt in ein Netzwerk und sind daher ein wertvolles Ziel für Cyberangriffe.

In den Threat Tracker-Beiträgen von Greenbone wurden bereits zahlreiche Edge-Akteure behandelt, darunter Citrix Netscaler (CitrixBleed), Cisco XE, Fortinets FortiOS, Ivanti ConnectSecure, PaloAlto PAN-OS und Juniper Junos. Schauen wir uns die neuen Bedrohungen an, die im vergangenen Monat Juni 2024 aufgetaucht sind.

Chinesische APT-Kampagne greift FortiGate-Systeme an

CVE-2022-42475 (CVSS 9.8 Kritisch), eine schwerwiegende Schwachstelle für Remote Code Execution, die FortiGate Network Security Appliances betrifft, wurde vom niederländischen Militärischen Nachrichten- und Sicherheitsdienst (MIVD) in eine neue Cyberspionagekampagne einbezogen, die sich gegen westliche Regierungen, internationale Organisationen und die Verteidigungsindustrie richtet. Der MIVD gab Einzelheiten bekannt, darunter die Zuordnung zu einer staatlichen chinesischen Hackergruppe. Bei den Angriffen wurde eine neue Variante einer fortschrittlichen Stealth-Malware namens CoatHanger installiert, die speziell für FortiOS entwickelt wurde und auch nach Neustarts und Firmware-Updates noch aktiv ist. Nach Angaben der CISA wurde CVE-2022-42475 bereits in einer Kampagne von Ende 2023 von staatlichen Bedrohungsakteuren verwendet. Bei der jüngsten Kampagne wurden mehr als 20.000 FortiGate VPN-Instanzen infiziert.

Eine offensichtliche Erkenntnis hier ist, dass eine Unze Prävention mehr wert ist als ein Pfund Heilung. Bei diesen ersten Angriffen wurde eine über ein Jahr alte Schwachstelle ausgenutzt, die somit vermeidbar gewesen wäre. Bewährte Verfahren zur Cybersicherheit schreiben vor, dass Unternehmen regelmäßige Schwachstellen-Scans durchführen und Maßnahmen ergreifen sollten, um entdeckte Bedrohungen zu entschärfen. Der Greenbone Enterprise-Feed enthält eine Erkennung für CVE-2022-42475.

P2Pinfect infiziert ungepatchte Redis-Server

P2Pinfect, ein Peer-to-Peer (P2P)-Wurm, der auf Redis-Server abzielt, wurde kürzlich so modifiziert, dass er Ransomware und Cryptowährungs-Miner einsetzt, wie von Cado Security beobachtet. P2Pinfect wurde erstmals im Juli 2023 entdeckt und ist eine ausgeklügelte Rust-basierte Malware mit Wurm-Fähigkeiten. Das bedeutet, dass sich die jüngsten Angriffe, die CVE-2022-0543 (CVSS 10 Kritisch) gegen ungepatchte Redis-Server ausnutzen, automatisch auf andere anfällige Server ausbreiten können.

Da CVE-2022-0543 im Februar 2022 veröffentlicht wurde, sollten Unternehmen, die ein konformes Schwachstellenmanagement betreiben, bereits gegen die jüngsten P2Pinfect-Ransomware-Angriffe gefeit sein. Innerhalb weniger Tage nach der Veröffentlichung von CVE-2022-0543 hat Greenbone mehrere Schwachstellen-Tests (VTs) [1][2][3][4][5] für den Community Edition-Feed veröffentlicht, die verwundbare Redis-Instanzen identifizieren. Dies bedeutet, dass alle Greenbone-Benutzer weltweit gewarnt werden und sich schützen können, wenn diese Schwachstelle in ihrer Infrastruktur existiert.

Check Point Quantum Security Gateways werden aktiv ausgenutzt

Das kanadische Zentrum für Cybersicherheit hat eine Warnung herausgegeben, da eine aktive Ausnutzung von CVE-2024-24919 (CVSS 8.6 Hoch) beobachtet wurde, die auch in den CISA-Katalog der bekannten ausgenutzten Schwachstellen (KEV) aufgenommen wurde. Beide Einrichtungen haben alle betroffenen Organisationen aufgefordert, ihre Systeme unverzüglich zu patchen. Die Schwachstelle ermöglicht es einem Angreifer, auf Informationen auf öffentlich zugänglichen Check Point Gateways mit aktiviertem IPSec VPN, Remote Access VPN oder Mobile Access zuzugreifen und kann auch laterale Bewegungen über nicht autorisierte Domain-Admin-Rechte im Netzwerk des Opfers ermöglichen.

Dieses Problem betrifft mehrere Produktlinien von Check Point, einschließlich CloudGuard Network, Quantum Scalable Chassis, Quantum Security Gateways und Quantum Spark Appliances. Check Point hat Anweisungen für die Anwendung eines Hotfixes veröffentlicht, um CVE-2024-24919 zu entschärfen. „Hotfixes“ sind Software-Updates, die außerhalb des geplanten Update-Zyklus des Herstellers herausgegeben werden, um ein dringendes Problem zu beheben.

CVE-2024-24919 wurde erst am 30. Mai 2024 veröffentlicht, wurde aber sehr schnell Teil einer Angriffskampagne, was den Trend zu einer immer kürzeren Time To Exploit (TTE) verdeutlicht. Greenbone fügte aktive Checks und passive Banner Detection Vulnerability Tests (VTs) hinzu, um CVE-2024-24919 innerhalb weniger Tage nach seiner Veröffentlichung zu identifizieren, so dass Verteidiger schnell proaktive Sicherheitsmaßnahmen ergreifen konnten.

Kritische Patches für Juniper

In einem heißen Monat für Juniper Networks veröffentlichte das Unternehmen ein Sicherheitsbulletin (JSA82681), das mehrere Schwachstellen in den optionalen Anwendungen von Juniper Secure Analytics behebt, und es wurde ein weiterer kritischer Fehler aufgedeckt: CVE-2024-2973. Zusätzlich zu diesen Problemen wurde der Session Smart Router (SSR) von Juniper geoutet, weil er bekannte Standard-Anmeldeinformationen [CWE-1392] für seine SSH-Anmeldung hat. CVE-2024-2973 (CVSS 10 Kritisch) ist eine Schwachstelle zur Umgehung der Authentifizierung in Session Smart Router (SSR), Session Smart Conductor und WAN Assurance Router-Produkten, die in redundanten Hochverfügbarkeitskonfigurationen ausgeführt werden und es einem Angreifer ermöglichen, die vollständige Kontrolle über ein betroffenes Gerät zu übernehmen.

Der Greenbone Enterprise Schwachstellen-Testfeed erkennt CVE-2024-2973, und Juniper stellt in seinem Sicherheitshinweis (JSA83126) Informationen zur Abhilfe bereit. Schließlich enthält Greenbone eine aktive Prüfung zur Erkennung einer unsicheren Konfiguration des Session Smart Router (SSR), indem untersucht wird, ob eine Anmeldung über SSH mit bekannten Standard-Anmeldeinformationen möglich ist.

Progress Telerik Report Server aktiv ausgenutzt

Letzten Monat haben wir darüber berichtet, wie ein Greenbone-Sicherheitsforscher die Sicherheitslücke CVE-2024-4837, die den Telerik Report Server von Progress Software betrifft, identifiziert hat und an deren Aufdeckung beteiligt war. Diesen Monat wurde eine weitere Schwachstelle in demselben Produkt in den Katalog der aktiv ausgenutzten Schwachstellen der CISA aufgenommen. Bei der ebenfalls im Mai 2024 veröffentlichten CVE-2024-4358 (CVSS 9.8 Kritisch) handelt es sich um eine Authentication Bypass by Spoofing-Schwachstelle [CWE-290], die es einem Angreifer ermöglicht, sich unerlaubten Zugriff zu verschaffen. Weitere Informationen, einschließlich Anweisungen zur vorübergehenden Umgehung der Schwachstelle, finden Sie im offiziellen Sicherheitshinweis des Herstellers.

Ebenfalls im Juni 2024 geriet Progress Software mit MOVEit Transfer, einem Tool zur Übertragung von Unternehmensdateien, mit einer neuen kritischen Sicherheitslücke (CVE-2024-5806, CVSS 9.1 Kritisch) wieder in die Kritik. MOVEit war für die größten Datenschutzverletzungen im Jahr 2023 verantwortlich, von denen über 2.000 Unternehmen betroffen waren.

Greenbone hat einen aktiven Check und Versionstests zur Erkennung von Schwachstellen (VTs) veröffentlicht, um CVE-2024-24919 innerhalb weniger Tage nach ihrer Veröffentlichung zu erkennen, und einen VT zur Erkennung von CVE-2024-5806 innerhalb weniger Stunden, sodass Verteidiger schnell Abhilfe schaffen können.

Zusammenfassung

Selbst Tech-Giganten tun sich schwer, Software ohne Schwachstellen zu liefern, was unterstreicht, wie wichtig die Wachsamkeit bei der Sicherung der IT-Infrastruktur von Unternehmen ist. Bedrohungen erfordern ständige Transparenz und schnelles Handeln. Die globale Landschaft ist voll von Angriffen auf Netzwerkdienste und -geräte, da große und kleine, raffinierte und opportunistische Angreifer versuchen, im Netzwerk eines Unternehmens Fuß zu fassen.

Kontakt Kostenlos testen Hier kaufen Zurück zur Übersicht