Schlagwortarchiv für: Schwachstellenmanagement

Kommende Woche startet die it-sa, eine der größten Plattformen für IT-Security-Lösungen. Unser CEO Dr. Jan-Oliver Wagner wird am Eröffnungstag, dem 22. Oktober 2024, ab 11:00 Uhr zeigen, wie Unternehmen dauerhaft und in Krisensituationen handlungsfähig bleiben können. Unter dem Titel  „Sicher sein und sicher bleiben“ weist er im Forum 6-B Wege aus der wachsenden Bedrohungslage durch Cyberrisiken. Nicht umsonst aber heißt der Überblick über die Möglichkeiten und Potenziale von Schwachstellenmanagement nicht „Vortrag“, sondern „Action“: Handeln ist gefragt!

Werden Sie aktiv!

In Zeiten, in denen Ransomware-Banden mehrstellige Millionenbeträge zu erpressen versuchen, gilt es für Unternehmen und Organisationen, möglichst frühzeitig für die Sicherheit der IT-Systeme mit ihren Daten und Kommunikationswegen tätig zu werden. Jede Investition in die eigene Cybersicherheit macht sich um ein Vielfaches bezahlt, vergleicht man die Anschaffungskosten einer entsprechenden proaktiven Lösung mit den Kosten, die durch den Schaden entstehen – und die mit dem Zahlen von Lösegeldern bei Weitem nicht abgegolten sind. Wie bei jeder Rechnung mit Zins und Zinseszins: Je früher die Investition begonnen wird, desto mehr zahlt sie sich aus.

Die Lösungen von Greenbone setzen am frühestmöglichen Zeitpunkt der Entstehungsgeschichte von Cyberrisiken an: Dem Auffinden von Sicherheitslücken in der eigenen IT-Infrastruktur. So geht das Schwachstellenmanagement Hand in Hand mit einer fundierten Security-Strategie, in deren Rahmen kontinuierlich Sicherheitsdaten bereitgestellt, Systeme überwacht und Ergebnisse verglichen und ausgewertet werden.

Wissensvorsprung verschaffen

Weil Kriminelle ihre Angriffe auf die Netzwerke ihrer Opfer so einfach und so flächendeckend wie möglich gestalten, um ihre Gewinne zu maximieren, sollten IT-Verantwortliche es ihnen hierbei so schwer wie möglich machen. Schwachstellenmanagement bietet Unternehmen einen entscheidenden Vorsprung im Wettlauf mit potenziellen Angreifern. Sicherheitslücken werden zwar häufig schon vor ihrer öffentlichen Bekanntgabe ausgenutzt, sind sie aber erst einmal offiziell bekannt, kommt der Wettlauf zwischen Angreifer und Angegriffenem in die heiße Phase: Angriffsvektoren sollten jetzt schneller geschlossen werden, als Cyberkriminelle sie ausnutzen können.

Risiken managen

Damit das Sicherheitsrisiko gar nicht so weit eskaliert, greifen die Lösungen von Greenbone auf mittlerweile über 180.000 automatisierte Schwachstellentests zu. Sie reduzieren damit die potenzielle Angriffsfläche um 99 Prozent im Vergleich zu Unternehmen, die kein Vulnerability Management einsetzen. Diese immensen Möglichkeiten der Risikominimierung setzen ein umsichtiges Security-Management voraus. Denn je mehr Schwachstellen offengelegt werden, desto drängender wird die Frage, welche Aktionen zuerst eingeleitet werden müssen. Welche IT-Systeme brauchen Soforthilfe? Welche Assets und Interaktionspfade im Unternehmen sind besonders kritisch und durch welche Sicherheitsmaßnahmen zu bevorzugen?

Nur wer plausible Antworten auf diese Fragen hat, wird das Gesamtrisiko für Cyberangriffe auch dauerhaft so gering wie möglich halten können. Welche Prioritäten gesetzt werden sollten und wie eine entsprechende „Triage“ unter Daten und Systemen im operativen Alltag praktiziert werden kann, wird Jan-Oliver Wagner auf der it-sa in der Action „Sicher sein und sicher bleiben“ zeigen. Seien Sie dabei!

Besuchen Sie uns auf unserem Stand 6-346 oder vereinbaren Sie gleich einen Termin und sichern Sie sich Ihr Gratis-Ticket zur Messe. Wir freuen uns auf Ihren Besuch!

Jetzt Termin vereinbaren!

Auch wenn die Bundesregierung es wohl nicht geschafft hat, die notwendigen Umsetzungen der NIS2-Richtlinie fristgerecht auf den Weg zu bringen, sollten Unternehmen und Behörden nicht nachlassen. NIS2 kommt, zwar nicht wie geplant noch im Oktober, sondern erst im Frühjahr 2025, doch die Kerninhalte bleiben gleich. Ganz unabhängig vom schlussendlichen Termin gehört professionelles Schwachstellenmanagement wie das von Greenbone zwingend dazu.

Eigentlich hatten alle von NIS2 betroffenen Unternehmen und Organisationen schon acht Jahre Zeit, um sich einzuarbeiten und angemessene Maßnahmen zu treffen. Wer seine Hausaufgaben gemacht hat, wird bemerkt haben: Zwar kommt da viel Arbeit auf Firmen zu, vor allem auf Betreiber kritischer Infrastrukturen, aber das meiste ist doch überaus klar und wohldefiniert. Aber dass die NIS2-Umsetzung und -Einführung dennoch nicht immer einfach ist, zeigt derzeit der Deutsche Bundestag exemplarisch.

Acht Jahre verstrichen, Startschuss verpasst

Theoretisch wäre Ende Oktober der Startschuss für das NIS2UmsuCG (NIS-2-Umsetzungs- und Cybersicherheitsstärkungsgesetz) gefallen, doch aus dem von der EU auch für Deutschland verordneten Termin vom 17.10.2024 wird nichts. Die Referentenentwürfe von 2023 und 2024 fanden keine Mehrheit, selbst das Innenministerium ist skeptisch und „rechnet nicht mit einer fristgerechten Einführung der NIS2-Richtlinie“. Das geht aus einer Antwort des Ministeriums auf eine Anfrage des BVMW (Bundesverband mittelständische Wirtschaft – Unternehmerverband Deutschlands) hervor. „Wann die NIS2-Richtlinie kommt, die für den 17. Oktober 2024 geplant war, ist offenbar völlig unklar. In der Antwort des Innenministeriums heißt es lediglich, dass bei einem zügigen parlamentarischen Verfahren ein Inkrafttreten des Gesetzes im ersten Quartal 2025 möglich sei.“

NIS2-Studie: Unternehmen akzeptieren die Vorschriften

Dabei ergibt NIS2 durchaus Sinn und trifft auf hohe Akzeptanz, vor allem in sicherheitsrelevanten Branchen und Firmen, auch wenn diese selbst zugeben müssen, noch nicht perfekt vorbereitet zu sein. 38 Prozent halten NIS2 für überfällig, 67 Prozent gehen davon aus, dass Cyberattacken weiter zunehmen werden, und 84 Prozent wissen: Das Budget wird steigen. 34 Prozent der Unternehmen werden zukünftig in Schwachstellenmanagement investieren. Diese Zahlen stammen aus einer aktuellen, umfangreichen Studie von techconsult im Auftrag von Plusnet, die auch den Sinn und Zweck von NIS2 zusammenfasst: „Unternehmen und Organisationen werden angewiesen, robuste Sicherheitsmaßnahmen zu implementieren, regelmäßige Risikoanalysen durchzuführen und angemessene Schutzmechanismen gegen Cyberangriffe einzurichten. Eine erhöhte Transparenz und Reaktionsfähigkeit sollen dazu beitragen, Bedrohungen schneller zu identifizieren und einzudämmen.“

Top-Investitionsfelder von Unternehmen im Bereich Cybersicherheit: Sicherheits­schulungen (45 %), ISO-Zertifikate (44 %), Awareness-Trainings (42 %), sichere Kommunikation, EDR, SIEM, KI-Lösungen, automatisierte Schwachstellenscans (je 34 %).

Quelle: „NIS2 Readiness in deutschen Unternehmen“ techconsult GmbH/ Plusnet, 2024

Unternehmen und Organisationen werden so verpflichtet, Sicherheitsvorfälle innerhalb von 24-Stunden-Fristen zu melden. KRITIS-Betreiber setzen schon lange auf Systeme zur Angriffserkennung. Vor allem die schon von NIS1 betroffenen Unternehmen (55 %) setzen auf modernste Formen der Cyberabwehr – gegenüber Firmen, die durch NIS2 neu hinzukommen (44 %). Nachlassen sollten CISOs dennoch nicht, es gibt noch viel zu tun: Die von NIS1 betroffenen Unternehmen rangieren laut Studie, auch um zehn Prozent höher als die erweiterten NIS2-Sektoren, „unter anderem bei der Intrusion Detection & Prevention und automatisierten Schwachstellen-Scans“.

51 Prozent aller befragten Unternehmen und Organisationen verwenden SIEM-Lösungen (Security Information and Event Management), um Bedrohungen, Muster und Anomalien in großen Datenmengen frühzeitig zu identifizieren und Sicherheitsvorfälle zu verhindern.

„Diese Fähigkeit ist in Zeiten, in denen Cyberangriffe immer raffinierter werden, besonders wertvoll“, schreiben die Autoren der Studie. Dazu kommen Systemmonitoring, Logging und Reporting sowie Data Loss Prevention.

Neun von zehn Unternehmen wollen mehr in Sicherheit investieren

84 Prozent der Unternehmen und Organisationen werden ihr Security-Budget erhöhen, im Durchschnitt um zehn Prozent, größere Unternehmen sogar bis zu zwölf Prozent. Erst 29 Prozent haben Sicherheitsmaßnahmen voll umgesetzt, weitere 32 Prozent teilweise. Hauptgründe dafür sind der Fachkräftemangel, mangelndes Bewusstsein (Awareness) bei den eigenen Mitarbeitern, aber auch der Zeitplan, also die gebotene Eile.

Gleichwohl betrachten die Firmen die anstehende Umsetzung der NIS2-Richtlinie nicht nur als Kostenfaktor und Belastung, sondern auch als Chance, „die eigene Cyberresilienz zu stärken, Geschäftsprozesse zu optimieren und das Vertrauen von Kunden und Partnern zu gewinnen“.

Kontrastprogramm: Verzögerungen in der Politik

Wer aber die jüngsten Debatten in der Politik und die Analysen von Institutionen wie dem Bundesrechnungshof und Manuel Atug (Sprecher der AG KRITIS) verfolgt, der bekommt schnell den Eindruck, dass auf staatlicher Seite gerade Vertrauen verspielt wird. Sogar der Bundesrechnungshof kritisiert die geplanten Ausnahmen von der NIS2-Regelung für Behörden. Er fordere daher, so das Nachrichtenmagazin heise, den Gesetzesentwurf im parlamentarischen Verfahren nachzubessern. „Ausnahmen von den zentralen Vorgaben zur Informations- und Cybersicherheit sollten begrenzt werden und die Koordinatorin oder der Koordinator für Informationssicherheit sollte angemessene Aufgaben und Befugnisse erhalten, so zwei Kernforderungen. Auch seien die Bedarfe der Bundesbehörden an zusätzlichen Haushaltsmitteln kritisch zu hinterfragen.“

Trotz aller Streitpunkte winkt der Bundesrat Ende September eine Vorlage einfach durch, in „einer Minute und einer Sekunde“, wie Atug süffisant bemerkt. Wirkungslos ist das jedoch nicht, beispielsweise im Gesundheitswesen. Da könnten „künftig große Praxen, Berufsausübungsgemeinschaften und Medizinische Versorgungszentren Betreiber kritischer Anlagen werden“. Aber auch andere große ambulante Einrichtungen, umsatzstarke Praxen aus der Radiologie und Nuklearmedizin, Nephrologie oder Laboratoriumsmedizin könnten so als wichtige Einrichtungen relevant werden und unter die NIS2-Regeln fallen.

Verbrannte Erde, verlorene Zeit?

Es macht es nicht leichter, dass für Krankenhäuser auch noch besondere Übergangsfristen gelten. § 108 SGB V schreibt hier fünf Jahre vor, nun hat man eine entsprechend verlängerte Übergangsfrist auch für die wichtigen Einrichtungen gefordert. „Erste Nachweise kommen damit erst frühestens 2030“, zeigt sich Atug enttäuscht. Seine Kritik: „Sowohl die Bundesländer als auch das Gesundheitswesen sollen Cybersicherheit nur nach dem Minimalprinzip angehen, was der aktuellen Bedrohungslage als auch dem Lagebild Gesundheit absolut nicht gerecht wird.“ Die vielen Ausnahmen und das Verschweigen bekannter Defizite drohen hier, einen Flickenteppich von Ausnahmen zu schaffen, der niemandem helfe.

Warum Unternehmen jetzt investieren müssen

Die Studie von Plusnet zeigt klar: Das Bewusstsein in betroffenen Betrieben ist da, die Investitionsbereitschaft ebenso. Der Bundesrechnungshof und die AG KRITIS haben nachhaltig und laut bekundet, wie wichtig aktives Handeln jetzt ist – und ebenso laut ihrer Enttäuschung Ausdruck verliehen, dass gerade die Politik da nicht handelt, zumindest nicht angemessen. Unternehmen und Organisationen hingegen sind keineswegs die Hände gebunden: Was kommt, ist klar, auch hier im Greenbone Blog haben wir immer wieder darauf hingewiesen.

Spätestens nächstes Jahr werden viele Aspekte der IT-Security neu aufgerollt, und Schwachstellenmanagement wie Greenbones Enterprise Produkte spielen dabei eine wichtige Rolle.

Ein Bericht des Weltwirtschaftsforums von 2023, in dem 151 Führungskräfte von Unternehmen weltweit befragt wurden, ergab, dass 93 % der Cyber-Führungskräfte und 86 % der Unternehmensleiter glauben, dass in den nächsten zwei Jahren eine Cyber-Katastrophe wahrscheinlich ist. Dennoch stellen viele Softwareanbieter die schnelle Entwicklung und Produktinnovation über die Sicherheit. In diesem Monat erklärte CISA-Direktorin Jen Easterly, dass Softwareanbieter „Probleme schaffen, die Bösewichten Tür und Tor öffnen“ und dass „wir kein Cybersicherheitsproblem haben, sondern ein Softwarequalitätsproblem“. Nachgelagert profitieren die Kunden von innovativen Softwarelösungen, sind aber auch den Risiken von schlecht geschriebenen Softwareanwendungen ausgesetzt: finanziell motivierte Ransomware-Angriffe, Wiper-Malware, Spionage durch Nationalstaaten und Datendiebstahl, kostspielige Ausfallzeiten, Rufschädigung und sogar Insolvenz.

So scharfsinnig die Position der Direktorin auch sein mag, so sehr verdeckt sie doch die wahre Cyber-Risikolandschaft. So hat Bruce Schneier bereits 1999 festgestellt, dass die Komplexität der IT die Wahrscheinlichkeit menschlicher Fehler erhöht, die zu Fehlkonfigurationen führen [1][2][3]. Greenbone identifiziert sowohl bekannte Software-Schwachstellen als auch Fehlkonfigurationen mit branchenführenden Schwachstellentests und Konformitätstests, die CIS-Kontrollen und andere Standards wie die BSI-Basiskontrollen für Microsoft Office bestätigen.

Letztendlich tragen Unternehmen eine Verantwortung gegenüber ihren Interessengruppen, den Kunden und der Öffentlichkeit. Auf diese Verantwortung müssen sie sich konzentrieren und sich mit grundlegenden IT-Sicherheitsmaßnahmen wie einem Schwachstellenmanagement schützen. Im „September 2024 Threat Tracking“ geben wir einen Überblick über die schwerwiegendsten neuen Entwicklungen in der Cybersicherheitslandschaft, die sowohl für kleine Unternehmen als auch für große Organisationen eine Bedrohung darstellen.

SonicOS in Akira-Ransomware-Kampagnen

CVE-2024-40766 (CVSS 10 Kritisch), eine Sicherheitslücke, die sich auf SonicWalls Flaggschiff-Betriebssystem SonicOS auswirkt, wurde als ein bekannter Vektor für Kampagnen identifiziert, die Akira-Ransomware verbreiten. Akira, ursprünglich in C++ geschrieben, ist seit Anfang 2023 aktiv. Eine zweite, auf Rust basierende Version wurde in der zweiten Hälfte des Jahres 2023 zur dominierenden Variante. Es wird angenommen, dass die Hauptgruppe hinter Akira aus der aufgelösten Conti-Ransomware-Bande stammt. Akira wird jetzt als Ransomware-as-a-Service (RaaS) betrieben, die eine doppelte Erpressungstaktik gegen Ziele in Deutschland und in der EU, Nordamerika und Australien einsetzt. Bis Januar 2024 hatte Akira über 250 Unternehmen und kritische Infrastrukturen kompromittiert und über 42 Millionen US-Dollar erpresst.

Die Taktik von Akira besteht darin, bekannte Schwachstellen für den Erstzugang auszunutzen, beispielsweise:

Greenbone führt Tests durch, um SonicWall-Geräte zu identifizieren, die für CVE-2024-40766 [1][2] und alle anderen Schwachstellen anfällig sind, die von der Akira-Ransomware-Bande für den Erstzugang ausgenutzt werden.

Wichtiger Patch für Veeam Backup und Wiederherstellung

Ransomware ist die größte Cyber-Bedrohung, insbesondere im Gesundheitswesen. Das US-Gesundheitsministerium (HHS) berichtet, dass in den letzten fünf Jahren große Sicherheitsverletzungen um 256 % und Ransomware-Vorfälle um 264 % zugenommen haben. Unternehmen haben darauf mit proaktiven Cybersicherheitsmaßnahmen reagiert, um den Erstzugriff zu verhindern, sowie mit wirksameren Reaktionen auf Vorfälle einschließlich robusteren Lösungen für Backup and Recovery. Backup-Systeme sind daher ein Hauptziel für Ransomware-Betreiber.

Veeam ist ein weltweit führender Anbieter von Backup-Lösungen für Unternehmen und bewirbt seine Produkte als wirksamen Schutz gegen Ransomware-Angriffe. CVE-2024-40711 (CVSS 10 Kritisch), eine kürzlich bekannt gewordene Schwachstelle in Veeam Backup and Recovery, ist besonders gefährlich, da sie es Hackern ermöglichen könnte, die letzte Schutzlinie gegen Ransomware anzugreifen: Backups. Die Schwachstelle wurde von Florian Hauser von CODE WHITE GmbH, einem deutschen Forschungsunternehmen für Cybersicherheit, entdeckt und gemeldet. Die unbefugte Remote Code Execution (RCE) über CVE-2024-40711 wurde von Sicherheitsforschern innerhalb von 24 Stunden nach der Veröffentlichung verifiziert, und ein Proof-of-Concept-Code ist nun öffentlich online verfügbar, was das Risiko noch erhöht.

Veeam Backup & Replication Version 12.1.2.172 und alle früheren v12-Builds sind anfällig, und Kunden müssen die betroffenen Instanzen dringend patchen. Greenbone kann CVE-2024-40711 in Veeam Backup and Restoration erkennen, sodass IT-Sicherheitsteams den Ransomware-Banden damit einen Schritt voraus sind.

Blast-RADIUS bringt 20 Jahre alte MD5-Kollision ans Licht

RADIUS ist ein leistungsfähiges und flexibles Authentifizierungs-, Autorisierungs- und Abrechnungsprotokoll (AAA), das in Unternehmensumgebungen verwendet wird, um die vom Benutzer eingegebenen Anmeldeinformationen mit einem zentralen Authentifizierungsdienst wie Active Directory (AD), LDAP oder VPN-Diensten abzugleichen. CVE-2024-3596, genannt Blast-RADIUS, ist ein neu veröffentlichter Angriff auf die UDP-Implementierung von RADIUS, der von einer speziellen Website, einem Forschungspapier und Angriffsdetails begleitet wird. Proof-of-Concept-Code ist auch aus einer zweiten Quelle verfügbar.

Blast-RADIUS ist ein AiTM-Angriff (Adversary in the Middle), der eine Schwachstelle in MD5 ausnutzt, die ursprünglich im Jahr 2004 entdeckt und 2009 verbessert wurde. Forschende haben die Zeit, die zum Vortäuschen von MD5-Kollisionen benötigt wird, exponentiell reduziert und ihre verbesserte Version von Hashclash veröffentlicht. Der Angriff ermöglicht es einem aktiven AiTM, der sich zwischen einem RADIUS-Client und einem RADIUS-Server befindet, den Client dazu zu bringen, eine gefälschte Access-Accept-Antwort zu akzeptieren, obwohl der RADIUS-Server eine Access-Reject-Antwort ausgibt. Dies wird erreicht, indem eine MD5-Kollision zwischen der erwarteten Access-Reject- und einer gefälschten Access-Accept-Antwort berechnet wird, die es einem Angreifer ermöglicht, Login-Anfragen zu genehmigen.

Greenbone kann eine Vielzahl anfälliger RADIUS-Implementierungen in Unternehmensnetzwerken schützen, wie F5 BIG-IP [1], Fortinet FortiAuthenticator [2] und FortiOS [3], Palo Alto PAN-OS [4], Aruba CX Switches [5] und ClearPass Policy Manager [6]. Auf Betriebssystemebene schützt Greenbone dabei unter anderem Oracle Linux [7][8], SUSE [9][10][11], OpenSUSE [12][13], Red Had [14][15], Fedora [16][17], Amazon [18], Alma [19][20] und Rocky Linux [21][22].

Dringend: CVE-2024-27348 in Apache HugeGraph-Server

CVE-2024-27348 (CVSS 9.8 Kritisch) ist eine RCE-Sicherheitslücke im Open-Source Apache HugeGraph-Server, die alle Versionen 1.0 vor 1.3.0 in Java8 und Java11 betrifft. HugeGraph-Server bietet eine API-Schnittstelle zum Speichern, Abfragen und Analysieren komplexer Beziehungen zwischen Datenpunkten und wird häufig zur Analyse von Daten aus sozialen Netzwerken, bei Empfehlungsdiensten und zur Betrugserkennung verwendet.

CVE-2024-27348 ermöglicht es Angreifern, die Sandbox-Beschränkungen innerhalb der Gremlin-Abfragesprache zu umgehen, indem sie eine unzureichende Java-Reflection-Filterung verwendet. Ein Angreifer kann die Schwachstelle ausnutzen, indem er bösartige Gremlin-Skripte erstellt und sie über die API an den HugeGraph/gremlin-Endpunkt sendet, um beliebige Befehle auszuführen. Die Schwachstelle kann über einen entfernten, benachbarten oder lokalen Zugriff auf die API ausgenutzt werden und Privilegien erweitern.

In Hacking-Kampagnen wird sie aktiv ausgenutzt. Proof-of-Concept-Exploit-Code [1][2][3] und eine eingehende technische Analyse sind öffentlich verfügbar, sodass Cyberkriminelle einen Vorsprung bei der Entwicklung von Angriffen haben. Greenbone bietet eine aktive Prüfung und einen Versionserkennungstest, um verwundbare Instanzen von Apache HugeGraph-Server zu identifizieren. Den Benutzern wird empfohlen, auf die neueste Version zu aktualisieren.

Ivanti: ein offenes Tor für Angreifer im Jahr 2024

In unserem Blog haben wir dieses Jahr mehrfach über Sicherheitslücken in Ivanti-Produkten berichtet [1][2][3]. September 2024 war ein weiterer heißer Monat für Schwachstellen in Ivanti-Produkten. Ivanti hat endlich die Sicherheitslücke CVE-2024-29847 (CVSS 9.8 Kritisch) gepatcht, eine RCE-Schwachstelle, die Ivanti Endpoint Manager (EPM) betrifft und erstmals im Mai 2024 gemeldet wurde. Proof-of-Concept-Exploit-Code und eine technische Beschreibung sind nun öffentlich verfügbar, was die Bedrohung erhöht. Obwohl es noch keine Hinweise auf eine aktive Ausnutzung gibt, sollte diese Sicherheitslücke mit hoher Priorität behandelt und dringend gepatcht werden.

Im September 2024 identifizierte die CISA jedoch auch vier neue Schwachstellen in Ivanti-Produkten, die aktiv ausgenutzt werden. Greenbone ist in der Lage, alle diese neuen Ergänzungen zu CISA KEV und frühere Schwachstellen in Ivanti-Produkten zu erkennen. Hier die Details:

  • CVE-2024-29824 (CVSS 9.6 Kritisch): Eine SQL-Injection-Schwachstelle [CWE-89] in der Core-Server-Komponente von Ivanti Endpoint Manager (EPM) 2022 SU5 und früher. Die Ausnutzung erlaubt einem nicht authentifizierten Angreifer mit Netzwerkzugang die Ausführung von beliebigem Code. Der Exploit-Code ist öffentlich auf GitHub verfügbar. Die Sicherheitslücke wurde erstmals im Mai 2024 bekannt gegeben.
  • CVE-2024-7593 (CVSS 9.8 Kritisch): Eine fehlerhafte Implementierung eines Authentifizierungsalgorithmus [CWE-303] in Ivanti Virtual Traffic Manager (vTM) Version 22 mit Ausnahme der Versionen 22.2R1 oder 22.7R2 kann es einem Angreifer ermöglichen, die Authentifizierung zu umgehen und auf das Admin-Panel zuzugreifen. CVE-2024-7593 wurde erst im August 2024 bekannt gegeben, dennoch ist bereits Exploit-Code verfügbar.
  • CVE-2024-8963 (CVSS 9.1 Kritisch): Ein Path Traversal [CWE-22] in Ivanti Cloud Services Appliance (CSA) Version 4.6 und früher ermöglicht einem entfernten, nicht authentifizierten Angreifer den Zugriff auf eingeschränkte Funktionen. Die Schwachstelle wurde am 19. September 2024 bekannt gegeben und in die CISA KEV aufgenommen. Ein Fix wurde von Ivanti bereits am 10. September herausgegeben, sodass Benutzer die Schwachstelle beheben können. Die von Ivanti empfohlene Abhilfemaßnahme ist jedoch ein Upgrade auf CSA 5.0. Die CSA-Version 4.6 hat ihr End-of-Life (EOL) für Sicherheitsupdates erst letzten Monat im August 2024 erreicht, aber gemäß seiner EOL-Richtlinie wird Ivanti noch ein Jahr lang Sicherheits-Patches herausgeben. In Verbindung mit der unten beschriebenen Sicherheitslücke CVE-2024-8190 kann die Administrator-Authentifizierung umgangen werden, sodass eine beliebige RCE auf CSA-Geräten möglich ist.
  • CVE-2024-8190 (CVSS 7.5 Hoch): Eine Schwachstelle zur OS Command Injection [CWE-78] in Ivanti Cloud Services Appliance (CSA) kann remote einem authentifizierten Angreifer RCE ermöglichen. Der Angreifer muss über Administratorrechte verfügen, um diese Sicherheitslücke auszunutzen. Die empfohlene Abhilfemaßnahme ist ein Upgrade auf CSA 5.0, um weiterhin unterstützt zu werden. Proof-of-Concept-Exploit-Code ist für CVE-2024-8190 öffentlich verfügbar.

Zusammenfassung

Im Threat-Tracking-Blog dieses Monats haben wir wichtige Entwicklungen im Bereich der Cybersicherheit hervorgehoben, darunter kritische Schwachstellen wie CVE-2024-40766, die von der Ransomware Akira ausgenutzt werden, CVE-2024-40711, die sich auf Veeam Backup auswirkt, und der kürzlich bekannt gewordene BlastRADIUS-Angriff, der sich auf Enterprise AAA auswirken könnte. Proaktive Cybersecurity-Aktivitäten wie regelmäßiges Vulnerability Management und Compliance-Prüfungen tragen dazu bei, die Risiken von Ransomware, Wiper-Malware und Spionagekampagnen zu mindern, und ermöglichen es den Verteidigern, Sicherheitslücken zu schließen, bevor Angreifer sie ausnutzen können.

In der ersten Hälfte des Jahres 2024 war die Cybersicherheit für viele Unternehmen sehr prekär. Selbst in sehr wichtigen Bereichen führten kritische Schwachstellen zu einer permanenten Bedrohung durch Cyberangriffe. Die Verteidiger stehen damit im ständigen Kampf, die unaufhaltsam entstehenden Sicherheitslücken zu erkennen und zu beheben. Große Unternehmen sind Ziel ausgeklügelter „Großwild-Jagden“ von Ransomware-Banden, die den Ransomware-Jackpot knacken wollen. Die größte Auszahlung aller Zeiten wurde im August gemeldet – 75 Millionen Dollar an die Dark Angels-Bande. Kleine und mittlere Unternehmen sind ebenfalls täglich Ziel von automatisierten „Mass Exploitation“-Angriffen, die ebenfalls häufig auf die Verbreitung von Ransomware abzielen [1][2][3].

Ein kurzer Blick auf die „Top Routinely Exploited Vulnerabilities“ der CISA zeigt, dass Cyberkriminelle zwar neue Informationen zu CVE (Common Vulnerabilities and Exposures) innerhalb weniger Tage oder sogar Stunden in Exploit-Code umwandeln können, ältere Schwachstellen aus den vergangenen Jahren aber immer noch auf ihrem Radar haben.

Im Threat Tracking dieses Monats beleuchten wir einige der größten Risiken für die Cybersicherheit in Unternehmen. Dabei geht es um Schwachstellen, die kürzlich als aktiv ausgenutzt gemeldet wurden, und andere kritische Schwachstellen in IT-Produkten von Unternehmen.

BSI findet Fehler in LibreOffice

OpenSource Security hat im Auftrag des Bundesamts für Sicherheit in der Informationstechnik (BSI) eine Sicherheitslücke in LibreOffice entdeckt. Unter der Bezeichnung CVE-2024-6472 (CVSS 7.8 Hoch) wurde festgestellt, dass Benutzer in LibreOffice-Dokumenten eingebettete unsignierte Makros aktivieren und damit die Einstellung „Hochsicherheitsmodus“ außer Kraft setzen können. Während die Ausnutzung der Schwachstelle menschliche Interaktion erfordert, vermittelt sie ein falsches Gefühl von Sicherheit, da nicht signierte Makros nicht ausgeführt werden können, wenn der Hochsicherheitsmodus aktiviert ist.

KeyTrap: DoS-Angriff gegen DNSSEC

Im Februar 2024 enthüllten Wissenschaftler des deutschen Nationalen Forschungszentrums für Angewandte Cybersicherheit (ATHENE) in Darmstadt den „schlimmsten Angriff auf DNS, der jemals entdeckt wurde“. Den deutschen Forschern zufolge kann ein einziges Paket einen „Denial of Service“ (DoS) verursachen, indem es einen DNS-Resolver während der DNSSEC-Validierung überflutet. Unter dem Namen „KeyTrap“ können Angreifer die Schwachstelle ausnutzen, um Clients, die einen kompromittierten DNS-Server verwenden, am Zugriff auf das Internet oder lokale Netzwerkressourcen zu hindern. Schuld daran ist ein Designfehler in der aktuellen DNSSEC-Spezifikation [RFC-9364], der mehr als 20 Jahre zurückliegt [RFC-3833].

Die im Februar 2024 veröffentlichte und als CVE-2023-50387 (CVSS 7.5 Hoch) verfolgte Sicherheitslücke gilt als trivial und der Proof-of-Concept-Code ist auf GitHub verfügbar. Die Verfügbarkeit von Exploit-Code bedeutet, dass Kriminelle mit geringen Kenntnissen leicht Angriffe starten können. Greenbone kann Systeme mit anfälligen DNS-Anwendungen, die von CVE-2023-50387 betroffen sind, mit lokalen Sicherheitsüberprüfungen (LSC) für alle Betriebssysteme identifizieren.

CVE-2024-23897 in Jenkins hilft, um in indische Bank einzubrechen

CVE-2024-23897 (CVSS 9.8 Kritisch) in Jenkins (Versionen 2.441 und LTS 2.426.2 und früher) wird aktiv ausgenutzt und in Ransomware-Kampagnen verwendet, sogar gegen die National Payments Corporation of India (NPCI). Jenkins ist ein Open-Source Automation Server, der in erster Linie für die kontinuierliche Integration (CI) und die kontinuierliche Bereitstellung (CD) bei Software Development Operations (DevOps) verwendet wird.

Das Command Line Interface (CLI) in den betroffenen Versionen von Jenkins enthält eine Path Traversal-Schwachstelle [CWE-35], die durch eine Funktion verursacht wird, die das @-Zeichen gefolgt von einem Dateipfad durch den tatsächlichen Inhalt der Datei ersetzt. Dies ermöglicht es Angreifern, den Inhalt sensibler Dateien zu lesen, einschließlich solcher, die unbefugten Zugriff und anschließende Codeausführung ermöglichen. CVE-2024-23897 und ihre Verwendung in Ransomware-Angriffen folgen einer gemeinsamen Warnung der CISA und des FBI an Softwarehersteller, in ihren Produkten Schwachstellen in Bezug auf Pfad-Querungen zu beheben [CWE-35]. Greenbone enthält eine aktive Prüfung [1] und zwei Tests zur Versionserkennung [2][3], um verwundbare Versionen von Jenkins unter Windows und Linux zu identifizieren.

2 neue aktiv genutzte CVEs in Apache OFBiz

Apache OFBiz (Open For Business) ist eine beliebte Open-Source Software für ERP (Enterprise Resource Planning) und E-Commece, die von der Apache Software Foundation entwickelt wurde. Im August 2024 warnte die CISA die Cybersecurity Community vor einer aktiven Ausnutzung von Apache OFBiz über CVE-2024-38856 (CVSS 9.8 Kritisch), die Versionen vor 18.12.13 betrifft. CVE-2024-38856 ist eine Path-Traversal-Schwachstelle [CWE-35], die die „Override View“-Funktion von OFBiz betrifft und nicht authentifizierten Angreifern eine Remote Code Execution (RCE) auf dem betroffenen System ermöglicht.

CVE-2024-38856 umgeht eine zuvor gepatchte Schwachstelle, CVE-2024-36104, die erst im Juni 2024 veröffentlicht wurde, was darauf hindeutet, dass die erste Korrektur das Problem nicht vollständig behoben hat. Dies baut auch auf einer anderen Sicherheitslücke in OFBiz aus dem Jahr 2024 auf, CVE-2024-32113 (CVSS 9.8 Kritisch), die ebenfalls aktiv zur Verbreitung des Mirai-Botnetzes ausgenutzt wurde. Schließlich wurden Anfang September 2024 zwei neue CVEs mit kritischem Schweregrad, CVE-2024-45507 und CVE-2024-45195 (CVSS 9.8 Kritisch), zur Liste der Bedrohungen hinzugefügt, die aktuelle Versionen von OFBiz betreffen.

Da aktive Exploits und PoC-Exploits (Proof of Concept) für CVE-2024-38856 [1][2] und CVE-2024-32113 [1][2] zur Verfügung stehen, müssen die Betroffenen dringend einen Patch installieren. Greenbone ist in der Lage, alle vorgenannten CVEs in Apache OFBiz sowohl mit aktiven als auch mit Versionsprüfungen zu erkennen.

CVE-2022-0185 im Linux-Kernel wird aktiv ausgenutzt

CVE-2022-0185 (CVSS 8.4 Hoch), eine Heap-Overflow-Schwachstelle im Linux-Kernel, wurde im August 2024 in die CISA KEV aufgenommen. Öffentlich verfügbarer PoC-Exploit-Code und detaillierte technische Beschreibungen der Schwachstelle haben zur Zunahme von Cyberangriffen unter Ausnutzung von CVE-2022-0185 beigetragen.

Bei CVE-2022-0185 wird in der Linux-Funktion „legacy_parse_param()“ innerhalb der Filesystem-Kontext-Funktionalität die Länge der übergebenen Parameter nicht ordnungsgemäß überprüft. Durch diesen Fehler kann ein nicht privilegierter lokaler User seine Privilegien auf den Root-User ausdehnen.

Greenbone konnte CVE-2022-0185 seit Offenlegung Anfang 2022 über Schwachstellen-Testmodule erkennen, die eine Vielzahl von Linux-Distributionen abdecken, darunter Red Hat, Ubuntu, SuSE, Amazon Linux, Rocky Linux, Fedora, Oracle Linux und Enterprise-Produkte wie IBM Spectrum Protect Plus.

Neue VoIP- und PBX-Schwachstellen

Im August 2024 wurden eine Handvoll CVEs veröffentlicht, die sich auf Sprachkommunikationssysteme in Unternehmen auswirken. Die Schwachstellen wurden in den VoIP-Systemen von Cisco für kleine Unternehmen und in Asterisk, einem beliebten Open-Source-PBX-Zweigstellensystem, aufgedeckt. Schauen wir uns die Einzelheiten an:

Cisco Small Business IP-Telefone mit RCE und DoS

Es wurden drei schwerwiegende Schwachstellen bekannt, die die Web-Management-Konsole der IP-Telefone der Cisco Small Business SPA300 Series und SPA500 Series betreffen. Diese Schwachstellen unterstreichen nicht nur, wie wichtig es ist, Management-Konsolen nicht dem Internet auszusetzen, sondern stellen auch einen Angriffsvektor für Insider oder ruhende Angreifer dar, die sich bereits Zugang zum Netzwerk eines Unternehmens verschafft haben, um ihre Angriffe auf höherwertige Vermögenswerte zu richten und den Geschäftsbetrieb zu stören.

Greenbone erkennt alle neu bekannt gewordenen CVEs in Cisco Small Business IP Phone. Hier eine kurze technische Beschreibung der einzelnen CVEs:

  • CVE-2024-20454 und CVE-2024-20450 (CVSS 9.8 Kritisch): Ein nicht authentifizierter Angreifer könnte remote beliebige Befehle auf dem zugrundeliegenden Betriebssystem mit Root-Rechten ausführen, da eingehende HTTP-Pakete nicht richtig auf ihre Größe geprüft werden, was zu einem Buffer Overflow führen kann.
  • CVE-2024-20451 (CVSS 7.5 Hoch): Ein nicht authentifizierter Angreifer kann remote ein betroffenes Gerät dazu bringen, unerwartet neu zu laden, was zu einem Denial of Service führt, da HTTP-Pakete nicht ordnungsgemäß auf ihre Größe überprüft werden.

CVE-2024-42365 in Asterisk PBX Telephonie-Toolkit

Asterisk ist eine Open-Source-Nebenstellenanlage (Private Branch Exchange; PBX) und ein Telefonie-Toolkit. PBX ist ein System zur Verwaltung der in- und externen Anrufweiterleitung und kann traditionelle Telefonleitungen (analog oder digital) oder VoIP (IP PBX) verwenden. CVE-2024-42365, veröffentlicht im August 2024, betrifft die Versionen von Asterisk vor 18.24.2, 20.9.2 und 21.4.2 sowie die zertifizierten Asterisk-Versionen 18.9-cert11 und 20.7-cert2. Auch wurde ein Exploit-Modul für das Metasploit-Framework veröffentlicht, das das Risiko noch erhöht. Eine aktive Ausnutzung in freier Wildbahn wurde jedoch noch nicht beobachtet.

Greenbone kann CVE-2024-42365 über Netzwerk-Scans erkennen. Hier eine kurze technische Beschreibung der Sicherheitslücke:

  • CVE-2024-42365 (CVSS 8.8 Hoch): Ein AMI-Benutzer mit „write=originate“ kann alle Konfigurationsdateien im Verzeichnis „/etc/asterisk/“ ändern. Er kann entfernte Dateien verkleinern und auf Festplatte schreiben, aber auch an bestehende Dateien anhängen, indem er die FILE-Funktion innerhalb der SET-Anwendung verwendet. Dieses Problem kann zu einer Privilegien-Erweiterung, Remote Code Execution oder zur Fälschung serverseitiger Requests mit beliebigen Protokollen führen.

Browser: eine ständige Bedrohung

CVE-2024-7971 und CVE-2024-7965, zwei neue Schwachstellen im Chrome-Browser mit hohem Schweregrad (CVSS 8.8), werden aktiv durch RCE ausgenutzt. Beide CVE können ausgelöst werden, wenn die Opfer dazu verleitet werden, einfach eine bösartige Webseite zu besuchen. Google räumt ein, dass der Exploit-Code öffentlich zugänglich ist, sodass auch wenig erfahrene Cyberkriminelle in der Lage sind, Angriffe zu starten. Für Google Chrome wurden in den letzten Jahren immer wieder neue Schwachstellen entdeckt und aktiv ausgenutzt. Ein kurzer Blick auf Mozilla Firefox zeigt einen ähnlichen kontinuierlichen Strom kritischer und schwerwiegender Sicherheitslücken; sieben kritische und sechs schwerwiegende Sicherheitslücken wurden im August 2024 in Firefox bekanntgegeben, obwohl keine aktive Ausnutzung dieser Schwachstellen gemeldet wurde.

Der ständige Ansturm auf Sicherheitslücken in den wichtigsten Browsern unterstreicht die Notwendigkeit, dafür zu sorgen, dass Updates installiert werden, sobald sie verfügbar sind. Aufgrund des hohen Marktanteils von Chrome von über 65 % (über 70 %, wenn man den auf Chromium basierenden Microsoft Edge berücksichtigt) erhalten die Schwachstellen dieses Browsers erhöhte Aufmerksamkeit von Cyberkriminellen. In Anbetracht der hohen Anzahl schwerwiegender Schwachstellen, die sich auf die V8-Engine von Chromium auswirken (bisher mehr als 40 im Jahr 2024), könnten Google Workspace-Administratoren in Erwägung ziehen, V8 für alle Nutzer in ihrer Organisation zu deaktivieren, um die Sicherheit zu erhöhen. Weitere Optionen zur Erhöhung der Browsersicherheit in Szenarien mit hohem Risiko sind die Verwendung von Remote-Browser-Isolierung, Netzwerksegmentierung und das Booten von sicheren Baseline-Images, um sicherzustellen, dass Endpunkte nicht gefährdet sind.

Greenbone umfasst aktive authentifizierte Schwachstellentests, um anfällige Versionen von Browsern für Linux, Windows und macOS zu identifizieren.

Zusammenfassung

Neue kritische und remote ausnutzbare Schwachstellen wurden in einem rekordverdächtigen Tempo inmitten eines brandgefährlichen Cyberrisiko-Umfelds aufgedeckt. Von IT-Sicherheitsteams zu verlangen, dass sie zusätzlich zur Anwendung von Patches neu entdeckte Schwachstellen manuell nachverfolgen, stellt eine unmögliche Belastung dar und birgt das Risiko, dass kritische Schwachstellen unentdeckt und somit ungeschützt bleiben. Schwachstellenmanagement gilt als grundlegende Cybersecurity-Aktivität; Verteidiger großer, mittlerer und kleiner Unternehmen müssen Tools wie Greenbone einsetzen, um Schwachstellen in der gesamten IT-Infrastruktur eines Unternehmens automatisch zu suchen und zu melden. 

Die Durchführung automatischer Netzwerkschwachstellen-Scans und authentifizierter Scans der Host-Angriffsfläche jedes Systems kann die Arbeitsbelastung der Verteidiger drastisch reduzieren, indem sie ihnen automatisch eine Liste von Abhilfemaßnahmen zur Verfügung stellt, die nach dem Schweregrad der Bedrohung sortiert werden kann.

OpenVAS wurde 2005 ins Leben gerufen, als Nessus von Open Source auf eine proprietäre Lizenz umgestellt wurde. Zwei Unternehmen, Intevation und DN Systems, übernahmen das bestehende Projekt und begannen, es unter einer GPL v2.0-Lizenz weiterzuentwickeln und zu pflegen. Seitdem hat sich OpenVAS zu Greenbone entwickelt, der weltweit meist genutzten und gelobten Open-Source-Lösung für Schwachstellenscanner und Schwachstellenmanagement. Wir sind stolz darauf, Greenbone sowohl als kostenlose Community Edition für Entwickler als auch als eine Reihe von Unternehmensprodukten mit unserem Greenbone Enterprise Feed für den öffentlichen Sektor und private Unternehmen anzubieten.

Als „alter Hase“ kennt Greenbone die Spiele, die Anbieter von Cybersicherheitsprodukten gerne in der Öffentlichkeit spielen. Unsere eigenen Ziele bleiben jedoch davon unberührt, denn wir halten uns an die Wahrheit über unser Produkt und die branchenführende Abdeckung von Schwachstellentests. Als wir den kürzlich von einem Mitbewerber veröffentlichten Benchmark-Bericht zu Netzwerk-Schwachstellen-Scannern 2024 gelesen haben, waren wir gelinde gesagt etwas schockiert.

Als Open-Source-Schwachstellen-Scanner mit der höchsten Anerkennung ist es nur logisch, dass Greenbone in den Wettbewerb um den Spitzenplatz aufgenommen wurde. Wir fühlen uns zwar geehrt, Teil des Tests zu sein, aber einige Fakten haben uns sehr zu denken gegeben. Denn in den Details sehen wir uns gezwungen, einiges klarzustellen…

Was der Benchmark-Test ergibt

Der von Pentest-Tools durchgeführte Benchmark-Test bewertet die führenden Schwachstellen-Scanner anhand zweier Faktoren: der Erkennungsverfügbarkeit (die CVEs, für die jeder Scanner Erkennungstests anbietet) und der Erkennungsgenauigkeit (wie effektiv diese Erkennungstests sind).

Bei dem Benchmark wurden die kostenlose Community Edition von Greenbone und der Greenbone Community Feed mit den Unternehmensprodukten anderer Anbieter verglichen: Qualys, Rapid7, Tenable, Nuclei, Nmap und das eigene Produkt von Pentest-Tools. In dem Bericht belegte Greenbone Platz 5 bei der Erkennungsverfügbarkeit und Platz 4 bei der Erkennungsgenauigkeit. Nicht schlecht, wenn man es mit den Titanen der Cybersicherheitsbranche aufnimmt.

Das einzige Problem ist, dass Greenbone, wie oben erwähnt, auch ein Unternehmensprodukt hat. Wenn die Ergebnisse unter Verwendung unseres Greenbone Enterprise Feeds neu berechnet werden, sind die Ergebnisse nämlich deutlich anders – Greenbone gewinnt haushoch.

Was unsere Recherche ergibt

Balkendiagramm aus dem Benchmark 2024 für Netzwerkschwachstellenscanner: Greenbone Enterprise erreicht mit 78 % Verfügbarkeit und 61 % Genauigkeit die höchsten Werte

Greenbone Enterprise führt das Feld der Schwachstellen-Scanner an.

 

Die Erkennungsverfügbarkeit unseres Enterprise Feed führt in der gesamten Gruppe

Nach unseren internen Ergebnissen, die im SecInfo-Portal eingesehen werden können, verfügt der Greenbone Enterprise Feed über Erkennungstests für 129 der 164 im Test enthaltenen CVEs. Das bedeutet, dass die Erkennungsverfügbarkeit unseres Enterprise-Produkts um erstaunliche 70,5% höher ist als angegeben, womit wir uns von allen anderen abheben.

Wichtig: Die Greenbone Enterprise Feed Tests sind nicht etwas, das wir nachträglich hinzugefügt haben. Greenbone aktualisiert sowohl die Community- als auch Enterprise-Feeds täglich, und wir sind oft die ersten, die Schwachstellentests veröffentlichen, wenn ein CVE veröffentlicht wird. Ein Blick auf unsere Schwachstellentests zeigt, dass diese vom ersten Tag an verfügbar waren.

Erkennungsgenauigkeit: stark unterschätzt

Zusätzlich kommt hinzu, dass Greenbone nicht wie die anderen Scanner arbeitet. Die Art und Weise, wie Greenbone entwickelt wurde, verleiht ihm starke, branchenführende Vorteile. Zum Beispiel kann unser Scanner über eine API gesteuert werden, die es Benutzer:innen ermöglicht, ihre eigenen Tools zu entwickeln und alle Funktionen von Greenbone auf jede beliebige Weise zu steuern. Zweitens gibt es bei den meisten anderen Schwachstellen-Scannern nicht einmal eine Bewertung der Erkennungsqualität (Quality of Detection, QoD).

Der Autor des Berichts stellte klar, dass er einfach die Standardkonfiguration für jeden Scanner verwendete. Ohne die korrekte Anwendung des QoD-Filters von Greenbone konnte der Benchmark-Test jedoch die tatsächliche CVE-Erkennungsrate von Greenbone nicht angemessen bewerten. Bei Anwendung dieser Ergebnisse liegt Greenbone erneut vorn und erkennt schätzungsweise 112 der 164 CVEs.

Zusammenfassung

Wir fühlen uns zwar geehrt, dass unsere Greenbone Community Edition in einem kürzlich veröffentlichten Benchmark für Netzwerk-Schwachstellen-Scanner den 5. Platz bei der Erkennungsverfügbarkeit und den 4. Platz bei der Erkennungsgenauigkeit belegt, es liegt aber auf der Hand, dass dabei unser Enterprise-Produkt im Rennen sein sollte. Schließlich umfasst der Benchmark auch die Unternehmenslösungen anderer Anbieter.

Bei einer Neuberechnung unter Verwendung des Enterprise Feeds steigt die Erkennungsverfügbarkeit von Greenbone auf 129 der 164 getesteten CVEs, was 70,5% über dem gemeldeten Wert liegt. Außerdem wird bei Verwendung der Standardeinstellungen Greenbones Quality of Detection (QoD) nicht berücksichtigt. Bereinigt um diese Versäumnisse liegt Greenbone an der Spitze der Konkurrenz. Als weltweit meistgenutzter Open-Source-Schwachstellen-Scanner ist Greenbone weiterhin führend bei der Abdeckung von Schwachstellen, der rechtzeitigen Veröffentlichung von Schwachstellentests und wirklich unternehmenstauglichen Funktionen wie einer flexiblen API-Architektur, fortschrittlicher Filterung und Quality-of-Detection-Bewertungen.

In jedem Unternehmen gibt es geschäftskritische Aktivitäten. Sicherheitskontrollen sollen sie schützen und sicherstellen, dass der Geschäftsbetrieb und die strategischen Ziele auf Dauer aufrechterhalten werden. Ein Sicherheitskonzept nach dem Motto „Install and forget“ bietet wenig Gewähr für das Erreichen dieser Ziele. In einer sich ständig verändernden digitalen Landschaft kann eine Sicherheitslücke zu einem schwerwiegenden Datenverstoß führen. Ereignisse und Entwicklungen wie die Ausweitung von Privilegien, Server-Wildwuchs und Konfigurationsfehler häufen sich. Sicherheitsteams, die diese Ereignisse nicht ständig überwachen, entdecken sie nicht – Angreifer schon. Daher handelt es sich bei Cybersicherheits-Frameworks in der Regel um iterative Prozesse, die Überwachung, Audits und kontinuierliche Verbesserungen umfassen.

Sicherheitsverantwortliche sollten sich fragen: Was muss unser Unternehmen messen, um eine hohe Sicherheit zu erlangen und sie kontinuierlich zu verbessern? In diesem Artikel werden wir Ihnen eine Begründung für Key Performance Indicators (KPI) in der Cybersicherheit geben, die von Branchenführern wie dem NIST und dem SANS Institute dargelegt werden, und einen Kernsatz von KPIs für das Schwachstellenmanagement definieren. Die grundlegenden KPIs, die hier behandelt werden, können als Ausgangspunkt für Unternehmen dienen, die ein einfaches Schwachstellenmanagement-Programm einführen, während die fortschrittlicheren Maßnahmen Unternehmen, die bereits über ein ausgereiftes Schwachstellenmanagement verfügen, mehr Transparenz bieten.

Wie KPIs die Cybersicherheit unterstützen

Leistungskennzahlen (KPIs) werden durch das Sammeln und Analysieren relevanter Leistungsdaten generiert und werden hauptsächlich für zwei strategische Ziele verwendet. Das erste ist die Erleichterung evidenzbasierter Entscheidungsfindung. Beispielsweise können KPIs helfen, die Leistung von Programmen zum Schwachstellenmanagement zu bewerten, um das Gesamtniveau der Risikominderung zu beurteilen und zu entscheiden, ob mehr Ressourcen zugewiesen oder der Status quo akzeptiert werden soll. Das zweite strategische Kernziel, das KPIs unterstützen, ist die Rechenschaftspflicht für Sicherheitsaktivitäten. KPIs können helfen, die Ursachen für eine schlechte Leistung zu ermitteln und eine Frühwarnung über unzureichende oder schlecht implementierte Sicherheitskontrollen auszusenden. Mit einer angemessenen Überwachung der Leistung des Schwachstellenmanagements kann die Wirksamkeit bestehender Verfahren bewertet werden, sodass diese angepasst oder durch zusätzliche Kontrollen ergänzt werden können. Die bei der Erstellung von KPIs gesammelten Nachweise können auch dazu verwendet werden, die Einhaltung interner Richtlinien, verbindlicher oder freiwilliger Cybersicherheitsstandards oder geltender Gesetze und Vorschriften nachzuweisen, indem die Aktivitäten des Cybersicherheitsprogramms belegt werden.

Der Umfang der Messung von KPIs kann unternehmensweit sein oder sich auf Abteilungen oder Infrastrukturen konzentrieren, die für den Geschäftsbetrieb entscheidend sind. Dieser Umfang kann auch angepasst werden, wenn ein Cybersicherheitsprogramm ausgereift ist. In der Anfangsphase eines Schwachstellenmanagements stehen möglicherweise nur grundlegende Informationen zur Verfügung, aus denen KPI-Metriken erstellt werden können. Mit zunehmender Reife eines Programms wird die Datenerfassung jedoch robuster und ermöglicht komplexere KPI-Metriken. Fortgeschrittenere Maßnahmen können auch gerechtfertigt sein, um für Organisationen mit erhöhtem Risiko eine hohe Sichtbarkeit zu erreichen.

Arten von Cybersicherheitsmaßnahmen

NIST SP 800-55 V1 (und sein Vorgänger NIST SP 800-55 r2) konzentriert sich auf die Entwicklung und Erfassung von drei Arten von Maßnahmen:

  • Implementierungsmaßnahmen: Diese messen die Umsetzung der Sicherheitsrichtlinien und den Fortschritt der Implementierung. Beispiele hierfür sind: die Gesamtzahl der gescannten Informationssysteme und der Prozentsatz der kritischen Systeme, die auf Schwachstellen gescannt wurden.
  • Maßnahmen zur Effektivität/Effizienz: Diese messen die Ergebnisse von Sicherheitsaktivitäten und überwachen Prozesse auf Programm- und Systemebene. So lässt sich feststellen, ob die Sicherheitskontrollen korrekt implementiert sind, wie beabsichtigt funktionieren und zu den gewünschten Ergebnissen führen. Zum Beispiel der prozentuale Anteil aller identifizierten kritischen Schwachstellen, die in der gesamten betrieblich kritischen Infrastruktur entschärft wurden.
  • Auswirkungsmessungen: Diese messen die geschäftlichen Auswirkungen von Sicherheitsaktivitäten wie Kosteneinsparungen, Kosten, die durch die Behebung von Sicherheitsschwachstellen entstehen, oder andere geschäftsbezogene Auswirkungen der Informationssicherheit.

Wichtige Leistungsindikatoren für das Schwachstellenmanagement

Da es beim Schwachstellenmanagement im Wesentlichen darum geht, bekannte Schwachstellen zu erkennen und zu beheben, sind KPIs, die Aufschluss über die Erkennung und Behebung bekannter Bedrohungen geben, am besten geeignet. Zusätzlich zu diesen beiden Schlüsselbereichen kann die Bewertung der Effektivität eines bestimmten Schwachstellenmanagement-Tools helfen, verschiedene Produkte zu vergleichen. Da dies die logischsten Möglichkeiten zur Bewertung von Schwachstellenmanagement-Aktivitäten sind, gruppiert unsere Liste die KPIs in diese drei Kategorien. Zu jedem Element wurden außerdem Tags hinzugefügt, die angeben, welchen in NIST SP 800-55 spezifizierten Zweck die Metrik erfüllt.

Die Liste ist zwar nicht vollständig, enthält jedoch einige wichtige KPIs für das Schwachstellenmanagement:

Leistungsmetriken für die Erkennung

  • Scan-Abdeckung (Implementierung): Hier wird der prozentuale Anteil der gesamten Anlagen einer Organisation gemessen, die auf Schwachstellen gescannt werden. Die Scan-Abdeckung ist besonders in den frühen Phasen der Programmimplementierung wichtig, um Ziele festzulegen und die sich entwickelnde Reife des Programms zu messen. Der Scan-Abdeckungsgrad kann auch verwendet werden, um Lücken in der IT-Infrastruktur eines Unternehmens zu identifizieren, die nicht gescannt werden und somit ein erhöhtes Risiko darstellen.
  • Mean Time to Detect (MTTD) (Effizienz): Damit wird die durchschnittliche Zeitspanne zwischen der ersten Veröffentlichung von Informationen und der Erkennung von Schwachstellen durch eine Sicherheitskontrolle gemessen. Die MTTD kann verbessert werden, indem die Häufigkeit der Aktualisierung der Module eines Schwachstellen-Scanners oder die Häufigkeit der Durchführung von Scans angepasst wird.
  • Verhältnis der nicht identifizierten Schwachstellen (Wirksamkeit): Das Verhältnis zwischen den proaktiv durch Scans identifizierten Schwachstellen und den Schwachstellen, die durch Post-Mortem-Analysen von Sicherheitsverletzungen oder Vorfällen entdeckt wurden. Ein höheres Verhältnis deutet auf bessere proaktive Erkennungsfähigkeiten hin.
  • Automatisierte Entdeckungsrate (Effizienz): Diese Kennzahl misst den Prozentsatz der Schwachstellen, die durch automatisierte Tools im Vergleich zu manuellen Erkennungsmethoden identifiziert werden. Eine höhere Automatisierung kann zu einer konsistenteren und schnelleren Erkennung führen.

Metriken zur Behebungsleistung

  • Mean Time to Remediate (MTTR; Effizienz): Damit wird die durchschnittliche Zeit gemessen, die für die Behebung von Schwachstellen nach deren Entdeckung benötigt wird. Durch die Verfolgung der Behebungszeiten können Unternehmen ihre Reaktionsfähigkeit auf Sicherheitsbedrohungen messen und das Risiko, das durch die Expositionszeit entsteht, bewerten. Eine kürzere MTTR deutet in der Regel auf einen agileren Sicherheitsbetrieb hin.
  • Remediation Coverage (Wirksamkeit): Diese Kennzahl gibt den Anteil der entdeckten Schwachstellen an, die erfolgreich behoben wurden, und dient als wichtiger Indikator für die Wirksamkeit bei der Behebung erkannter Sicherheitsrisiken. Der Abdeckungsgrad bei der Behebung kann so angepasst werden, dass er speziell die Rate der Schließung kritischer oder schwerwiegender Sicherheitslücken widerspiegelt. Indem sich die Sicherheitsteams zuerst auf die gefährlichsten Schwachstellen konzentrieren, können sie das Risiko effektiver minimieren.
  • Risikoscore-Reduktion (Auswirkung): Diese Kennzahl spiegelt die Gesamtauswirkungen der Schwachstellenmanagement-Aktivitäten auf das Risiko wider. Durch die Überwachung von Änderungen des Risikowertes lässt sich beurteilen, wie gut die Bedrohung durch exponierte Schwachstellen gehandhabt wird. Die Verringerung des Risiko-Scores wird in der Regel mit Hilfe von Risikobewertungs-Tools berechnet, die eine kontextbezogene Ansicht der einzigartigen IT-Infrastruktur und des Risikoprofils eines jeden Unternehmens bieten.
  • Konformitätsrate (Auswirkung): Diese Kennzahl gibt den Prozentsatz der Systeme an, die bestimmte Cybersicherheitsvorschriften, Standards oder interne Richtlinien einhalten. Sie ist ein wichtiges Maß für die Beurteilung des Konformitätsstatus und liefert verschiedenen Interessengruppen einen Nachweis über diesen Status. Sie dient auch als Warnung, wenn die Compliance-Anforderungen nicht erfüllt werden, wodurch das Risiko von Strafen verringert und die in den Compliance-Vorgaben vorgesehene Sicherheitslage gewährleistet wird.
  • Wiederöffnungsrate von Schwachstellen (Effizienz): Diese Kennzahl misst den Prozentsatz der Schwachstellen, die wieder geöffnet werden, nachdem sie als behoben markiert wurden. Die Wiederöffnungsrate gibt Aufschluss über die Effizienz der Abhilfemaßnahmen. Im Idealfall wird für die Schwachstelle kein weiteres Ticket ausgestellt, sobald ein Problembehebungs-Ticket geschlossen wurde.
  • Kosten der Behebung (Auswirkung): Diese Kennzahl misst die Gesamtkosten, die mit der Behebung erkannter Schwachstellen verbunden sind, und umfasst sowohl direkte als auch indirekte Ausgaben. Die Kostenanalyse kann Entscheidungen zur Budgetierung und Ressourcenzuweisung unterstützen, indem sie den Zeit- und Ressourcenaufwand für die Erkennung und Behebung von Schwachstellen erfasst.

Metriken zur Effektivität von Schwachstellenscannern

  • True-Positive-Erkennungsrate (Wirksamkeit): Sie misst den Prozentsatz der Schwachstellen, die von einem bestimmten Tool genau erkannt werden können. Diese Rate zielt auf die effektive Abdeckung eines Schwachstellen-Scanning-Tools und ermöglicht den Vergleich zweier Schwachstellen-Scanning-Produkte anhand ihres relativen Werts.
  • False-Positive-Erkennungsrate (Effektivität): Diese Metrik misst die Häufigkeit, mit der ein Tool fälschlicherweise nicht vorhandene Schwachstellen als vorhanden identifiziert. Dies kann zu einer Verschwendung von Ressourcen führen. Anhand dieser Rate kann die Zuverlässigkeit eines Schwachstellen-Scanning-Tools gemessen werden, um sicherzustellen, dass es mit den betrieblichen Anforderungen übereinstimmt.

Erkenntnisse

Durch die Erstellung und Analyse von Leistungsindikatoren (KPIs) können Unternehmen die grundlegenden Anforderungen an die Cybersicherheit für eine kontinuierliche Überwachung und Verbesserung erfüllen. KPIs unterstützen außerdem zentrale Geschäftsstrategien wie evidenzbasierte Entscheidungsfindung und Rechenschaftspflicht.

Mit quantitativen Einblicken in Schwachstellenmanagement-Prozesse können Unternehmen ihre Fortschritte besser einschätzen und ihre Cybersicherheitsrisiken genauer bewerten. Durch die Zusammenstellung geeigneter KPIs können Unternehmen den Reifegrad ihrer Schwachstellenmanagement-Aktivitäten nachverfolgen, Lücken in den Kontrollen, Richtlinien und Verfahren erkennen, die die Effektivität und Effizienz ihrer Schwachstellenbeseitigung einschränken, und die Übereinstimmung mit den internen Risikoanforderungen und den relevanten Sicherheitsstandards, Gesetzen und Vorschriften sicherstellen.

Referenzen

National Institute of Standards and Technology. Measurement Guide for Information Security: Volume 1 — Identifying and Selecting Measures. NIST, January 2024, https://csrc.nist.gov/pubs/sp/800/55/v1/ipd

National Institute of Standards and Technology. Performance Measurement Guide for Information Security, Revision 2. NIST, November 2022, https://csrc.nist.gov/pubs/sp/800/55/r2/iwd

National Institute of Standards and Technology. Assessing Security and Privacy Controls in Information Systems and Organizations Revision 5. NIST, January 2022, https://csrc.nist.gov/pubs/sp/800/53/a/r5/final

National Institute of Standards and Technology. Guide for Conducting Risk Assessments Revision 1. NIST, September 2012, https://csrc.nist.gov/pubs/sp/800/30/r1/final

National Institute of Standards and Technology. Guide to Enterprise Patch Management Planning: Preventive Maintenance for Technology Revision 4. NIST, April 2022, https://csrc.nist.gov/pubs/sp/800/40/r4/final

SANS Institute. A SANS 2021 Report: Making Visibility Definable and Measurable. SANS Institute, June 2021, https://www.sans.org/webcasts/2021-report-making-visibility-definable-measurable-119120/

SANS Institute. A Guide to Security Metrics. SANS Institute, June 2006, https://www.sans.org/white-papers/55/

Die Bedrohungslage in puncto Cybersecurity war noch nie so angespannt wie derzeit. Sogar offizielle Stellen prognostizieren, dass dies auch in Zukunft so bleiben wird.  Während die Zahl der Schwachstellen steigt, die die Angreifer ausnutzen können, berichten Analysten, dass die Täter außerdem die Schwachstellen schneller ausnutzen als bisher. Neue Sicherheitshinweise verwerten sie innerhalb weniger Tage, vielleicht sogar Stunden nach ihrer Veröffentlichung, schon in ihren Angriffen.  Unternehmen sind damit einem höheren Risiko ausgesetzt und müssen jetzt bei Transparenz und Effizienz ihrer Abhilfemaßnahmen nachbessern.

Ein beunruhigender Vorfall im Zuge einer nicht gepatchten Sicherheitslücke ist der kürzlich erfolgte Anschlag gegen die Cybersicherheit des Bildungssystems von Helsinki, der zum Diebstahl von mehreren Millionen Dateien mit den sensiblen persönlichen Daten von etwa 80.000 Personen führte. Die forensische Analyse des Angriffs deutet darauf hin, dass russische Bedrohungsakteure dafür verantwortlich sein könnten.

Die Datenpanne im Bildungssystem von Helsinki

Am 2. Mai 2024 wurde die Bildungsabteilung der Stadt Helsinki über eine nicht gepatchte Sicherheitslücke in einem Remote Access Server angegriffen. Nach Angaben des City Managers Jukka-Pekka Ujula war ein Hotfix-Patch bereits verfügbar, um die Schwachstelle zu beseitigen, „aber es ist derzeit nicht bekannt, warum dieser Hotfix nicht auf dem Server installiert wurde“.

Konkrete technische Details über die Sicherheitslücke wurden noch nicht veröffentlicht. Bekannt ist jedoch, dass die Angreifer in der Lage waren, sich Zugang zu Netzlaufwerken mit mehreren Millionen Dateien zu verschaffen und diese zu stehlen. Jukka-Pekka Ujula dazu: „Unsere Kontrollen und Verfahren für Sicherheitsupdates und Gerätewartung waren unzureichend.“ Gemeint ist damit ein fehlendes Schwachstellenmanagement, mit dem sichergestellt wird, dass bekannte Sicherheitslücken entschärft werden.

Zu den gestohlenen Daten gehören personenbezogene Informationen von rund 80.000 Schülern, Erziehungsberechtigten und Mitarbeitern, darunter Benutzernamen und E-Mail-Adressen, Personalausweise, physische Adressen von Schülern sowie andere sensible private Informationen, beispielsweise Gebühren (mit Begründungen) für Kunden der frühkindlichen Bildung und Betreuung, sensible Informationen über den Status von Kindern, Anträge auf Schülerfürsorge oder besondere Unterstützung, ärztliche Bescheinigungen über die Unterbrechung des Studiums für Schüler der Sekundarstufe II und Krankenakten.

Finnlands Reaktion auf den Datenschutzverstoß

Hannu Heikkinen, Chief Digital Officer der Stadt Helsinki, teilte Reportern mit, dass eine erste forensische Analyse des Einbruchs Hinweise darauf ergeben hat, dass der Angriff möglicherweise aus Russland stammt. Er ereignete sich wenige Monate nach der Eskalation der Grenzspannungen zwischen Russland und Finnland. Obwohl russische nationalstaatliche Bedrohungsakteure und mit ihnen verbundene Gruppen für cyber-militärische Kampagnen gegen ihre Gegner bekannt sind, hat keiner von ihnen die Verantwortung für den Angriff übernommen. In Deutschland hat das Bundesamt für Sicherheit in der Informationstechnik (BSI) den Standpunkt vertreten, dass sich Deutschland als Reaktion auf die zunehmenden Cyberangriffe von russischen Bedrohungsakteuren strategisch neu ausrichten und mehr in die Cybersicherheit investieren muss.

Das Nationale Cybersicherheitszentrum Finnland (NCSC-FI) veröffentlicht Aktualisierungen und Leitlinien für den Umgang mit solchen Vorfällen und für die Verbesserung der Cybersicherheitsmaßnahmen im öffentlichen und privaten Sektor. Die finnische Regierung hat auch die Notwendigkeit einer systematischen Entwicklung und verstärkten Zusammenarbeit zwischen den Behörden hervorgehoben, um die Widerstandsfähigkeit des Landes in der Cybersicherheit zu verbessern.

Trafcom, die finnische Behörde für Verkehr und Kommunikation, bietet Ratschläge für diejenigen, deren persönliche Daten gestohlen wurden, oder für alle, die verdächtige Mitteilungen im Zusammenhang mit diesem Vorfall erhalten. Alle Betroffenen werden gebeten, verdächtige Mitteilungen an kaskotietoturvatilanne@hel.fi oder unter der Telefonnummer +358 9 310 27139 zu melden.

Greenbone unterstützt bewährte Praktiken der Cybersicherheit

Die Erkenntnis aus diesem und ähnlichen Vorfällen ist, dass vorbeugende Maßnahmen in der Cybersecurity wie die Nutzung eines Schwachstellenmanagements das Risiko einer Datenpanne und die damit verbundenen Kosten verringern. Um sich zu schützen, müssen Unternehmen einen proaktiven Ansatz verfolgen, indem sie Richtlinien, Prozesse und Technologien wie die Greenbone Enterprise Vulnerability Management-Plattform implementieren, die bewährte Verfahren für die Cybersicherheit unterstützen. Andernfalls sind Angreifern Tür und Tor geöffnet, was Risiken mit sich bringt – finanziell, für die Reputation und für die Privatsphäre.

Greenbone bietet eine hohe Transparenz der Systeme und Software innerhalb der IT-Infrastruktur eines Unternehmens und nimmt Informationen über Cyber-Bedrohungen auf, sodass IT-Sicherheitsteams Risiko-orientiert Abhilfe schaffen können. Als Plattform zum Scannen und Verwalten von Schwachstellen unterstützt Greenbone Unternehmen dabei, bekannte Schwachstellen in IT-Umgebungen zu erkennen und Standards wie den BSI-Grundschutz und CIS-Vorgaben einzuhalten.

Kontakt Kostenlos testen Hier kaufen Zurück zur Übersicht

NIS2 Umsetzung gezielt auf den Weg bringen!

Die Deadline für die Umsetzung von NIS2 rückt näher – zum 17.10.2024 sollen verschärfte Cybersicherheitsmaßnahmen in Deutschland über das NIS2 Umsetzungsgesetz ins Recht überführt werden. Dieses liegt bisher als Gesetzesentwurf vor, welcher sich an der EU Richtlinie 2022/2555 orientiert. Diese Richtlinie haben wir für Sie unter die Lupe genommen, um Ihnen in diesem kurzen Video die wichtigsten Anhaltspunkte und Wegweiser für das Inkrafttreten von NIS2 an die Hand zu geben. Ob Ihr Unternehmen betroffen ist, welche Maßnahmen Sie unbedingt ergreifen sollten, welche Themengebiete der Cybersicherheit Sie besonders bedenken müssen, wen Sie diesbezüglich konsultieren können und welche Konsequenzen die Nichteinhaltung hat, erfahren sie in diesem Video.

Vorschaubild zum Video ‚Was Sie zu NIS2 wissen müssen‘ mit europäischem Sternenkreis und NIS2-Schriftzug – leitet zu YouTube weiter

Informieren sie sich über den Cyber Resilience Act, welcher ein solides Regelwerk bietet, um die Widerstandskraft Ihres Unternehmens gegen Cyberangriffe zu stärken. Die ENISA Common Criteria werden Ihnen helfen, die Sicherheit Ihrer IT-Produkte und Systeme zu bewerten und bereits in der Entwicklung einen risikominimierenden Ansatz zu fahren. Priorisieren Sie außerdem die Einführung eines Informationsmanagementssystems, beispielsweise durch die Umsetzung der ISO 27001 Zertifizierung für Ihr Unternehmen. Lassen Sie sich diesbezüglich zum Thema IT-Grundschutz von entsprechenden, vom BSI empfohlenen Fachkräften beraten.

Neben dem BSI als Anlaufstelle für Anliegen bzgl. NIS2 stehen wir Ihnen gerne zur Verfügung und bieten zertifizierte Lösungen für Schwachstellenmanagement und Penetration Testing. Durch einen proaktiven Ansatz können Sie Sicherheitslücken in Ihren Systemen frühzeitig erkennen und absichern, bevor sie für einen Angriff genutzt werden können. Unsere Schwachstellenmanagementlösung sucht Ihr System automatisch nach kritischen Punkten ab und erstattet Ihnen regelmäßig Bericht. Beim Penetration Testing versucht ein menschlicher Tester in Ihr System einzudringen, um Ihnen die finale Gewissheit über die Angriffsfläche Ihrer Systeme zu verschaffen. 

Auch sollten Sie es sich zur Gewohnheit machen, durch regelmäßige Schulungen zum Thema Cybersecurity auf dem neuesten Stand zu bleiben und einen regen Austausch mit anderen NIS2 Unternehmen zu etablieren. Nur so führt NIS2 am effizientesten zu einem nachhaltig erhöhten Cybersicherheitsniveau in Europa.

Kontakt Kostenlos testen Hier kaufen Zurück zur Übersicht

IT-Sicherheitsteams müssen nicht unbedingt wissen, was CSAF ist, aber andererseits kann die Kenntnis dessen, was „unter der Haube“ einer Schwachstellenmanagement-Plattform passiert, einen Kontext dafür liefern, wie sich das Schwachstellenmanagement der nächsten Generation entwickelt und welche Vorteile ein automatisiertes Schwachstellenmanagement hat. In diesem Artikel geben wir eine Einführung in CSAF 2.0, was es ist und wie es das Schwachstellenmanagement in Unternehmen verbessern soll.

Die Greenbone AG ist offizieller Partner des Bundesamtes für Sicherheit in der Informationstechnik (BSI) bei der Integration von Technologien, die den CSAF 2.0 Standard für automatisierte Cybersecurity Advisories nutzen.

Was ist CSAF?

Das Common Security Advisory Framework (CSAF) 2.0 ist ein standardisiertes, maschinenlesbares Format für Hinweise auf Sicherheitslücken. CSAF 2.0 ermöglicht es der vorgelagerten Cybersecurity Intelligence Community, einschließlich Software- und Hardware-Anbietern, Regierungen und unabhängigen Forschern, Informationen über Schwachstellen bereitzustellen. Nachgelagert ermöglicht CSAF den Nutzern von Schwachstelleninformationen, Sicherheitshinweise von einer dezentralen Gruppe von Anbietern zu sammeln und die Risikobewertung mit zuverlässigeren Informationen und weniger Ressourcenaufwand zu automatisieren.

Durch die Bereitstellung eines standardisierten, maschinenlesbaren Formats stellt CSAF eine Entwicklung hin zu einem automatisierten Schwachstellenmanagement der nächsten Generation dar, das die Belastung der IT-Sicherheitsteams, die mit einer ständig wachsenden Zahl von CVE-Enthüllungen konfrontiert sind, verringern und die risikobasierte Entscheidungsfindung angesichts eines Ad-hoc-Ansatzes beim Austausch von Schwachstelleninformationen verbessern kann.

CSAF 2.0 ist der Nachfolger des Common Vulnerability Reporting Framework (CVRF) v1.2 und erweitert die Möglichkeiten seines Vorgängers, um mehr Flexibilität zu bieten.

Hier sind die wichtigsten Erkenntnisse:

  • CSAF ist ein internationaler offener Standard für maschinenlesbare Dokumente mit Hinweisen auf Schwachstellen, der die Markup-Sprache JSON verwendet.
  • Die CSAF-Aggregation ist ein dezentralisiertes Modell zur Verteilung von Schwachstelleninformationen.
  • CSAF 2.0 wurde entwickelt, um ein automatisiertes Schwachstellenmanagement der nächsten Generation in Unternehmen zu ermöglichen.

Der traditionelle Prozess des Schwachstellenmanagements

Der traditionelle Prozess der Schwachstellenverwaltung ist für große Unternehmen mit komplexen IT-Umgebungen ein schwieriger Prozess. Die Anzahl der CVEs, die in jedem Patch-Zyklus veröffentlicht werden, steigt in einem unkontrollierbaren Tempo [1][2]. Bei einem herkömmlichen Schwachstellenmanagementprozess sammeln IT-Sicherheitsteams Schwachstelleninformationen manuell über Internetrecherchen. Auf diese Weise ist der Prozess mit einem hohen manuellen Aufwand für das Sammeln, Analysieren und Organisieren von Informationen aus einer Vielzahl von Quellen und Ad-hoc-Dokumenten Formaten verbunden.

Zu diesen Quellen gehören in der Regel:

  • Datenbanken zur Verfolgung von Schwachstellen wie NIST NVD
  • Sicherheitshinweise der Produktanbieter
  • Nationale und internationale CERT-Beratungen
  • Bewertungen der CVE-Nummerierungsbehörde (CNA)
  • Unabhängige Sicherheitsforschung
  • Plattformen für Sicherheitsinformationen
  • Code-Datenbanken ausnutzen

Das letztendliche Ziel, eine fundierte Risikobewertung durchzuführen, kann während dieses Prozesses auf verschiedene Weise vereitelt werden. Empfehlungen, selbst die des Produktanbieters, sind oft unvollständig und werden in einer Vielzahl nicht standardisierter Formate geliefert. Dieser Mangel an Kohärenz erschwert eine datengestützte Entscheidungsfindung und erhöht die Fehlerwahrscheinlichkeit.

Lassen Sie uns kurz die bestehende Informationspipeline für Schwachstellen sowohl aus der Sicht der Ersteller als auch der Verbraucher betrachten:

Der Prozess der Offenlegung von Schwachstellen

Die in der National Vulnerability Database (NVD) des NIST (National Institute of Standards and Technology) veröffentlichten CVE-Datensätze (Common Vulnerability and Exposure) stellen das weltweit zentralste globale Repository für Schwachstelleninformationen dar. Im Folgenden finden Sie einen Überblick darüber, wie der Prozess der Offenlegung von Schwachstellen funktioniert:

  1. Produktanbieter werden durch ihre eigenen Sicherheitstests oder durch unabhängige Sicherheitsforscher auf eine Sicherheitslücke aufmerksam und setzen damit eine interne Richtlinie zur Offenlegung von Sicherheitslücken in Gang. In anderen Fällen können unabhängige Sicherheitsforscher direkt mit einer CVE Numbering Authority (CNA) zusammenarbeiten, um die Schwachstelle ohne vorherige Rücksprache mit dem Produktanbieter zu veröffentlichen.
  2. Schwachstellen-Aggregatoren wie NIST NVD und nationale CERTs erstellen eindeutige Tracking-IDs (z. B. eine CVE-ID) und fügen die gemeldete Schwachstelle einer zentralen Datenbank hinzu, in der Produktanwender und Schwachstellenmanagement-Plattformen wie Greenbone die Fortschritte verfolgen können.
  3. Verschiedene Interessengruppen wie der Produkthersteller, NIST NVD und unabhängige Forscher veröffentlichen Hinweise, die Informationen zu Abhilfemaßnahmen, voraussichtliche Termine für offizielle Patches, eine Liste der betroffenen Produkte, CVSS-Auswirkungsbewertungen und Schweregrade, Common Platform Enumeration (CPE) oder Common Weakness Enumeration (CWE) enthalten können, aber nicht müssen.
  4. Andere Anbieter von Informationen über Cyber-Bedrohungen, wie z. B. Known Exploited Vulnerabilities (KEV) von CISA und Exploit Prediction Scoring System (EPSS) von First.org, liefern zusätzlichen Risikokontext.

Der Prozess des Schwachstellenmanagements

Die Produktanwender sind für die Aufnahme von Schwachstelleninformationen und deren Anwendung verantwortlich, um das Risiko einer Ausnutzung zu mindern. Hier ein Überblick über den traditionellen Prozess des Schwachstellenmanagements in Unternehmen:

  1. Produktanwender müssen CVE-Datenbanken manuell durchsuchen und die Sicherheitshinweise überwachen, die ihre Software- und Hardware-Assets betreffen, oder eine Schwachstellenmanagement-Plattform wie Greenbone nutzen, die automatisch die verfügbaren Ad-hoc-Bedrohungshinweise zusammenfasst.
  2. Die Produktnutzer müssen die verfügbaren Informationen mit ihrem IT-Bestand abgleichen. Dies beinhaltet in der Regel die Pflege eines Bestandsverzeichnisses und die Durchführung eines manuellen Abgleichs oder die Verwendung eines Produkts zum Scannen von Schwachstellen, um den Prozess der Erstellung eines Bestandsverzeichnisses und der Durchführung von Schwachstellentests zu automatisieren.
  3. Die IT-Sicherheitsteams ordnen die entdeckten Schwachstellen nach dem kontextbezogenen Risiko für kritische IT-Systeme, Geschäftsabläufe und in einigen Fällen für die öffentliche Sicherheit.
  4. Die Ausbesserungen werden entsprechend der endgültigen Risikobewertung und den verfügbaren Ressourcen zugewiesen.

Was ist falsch am traditionellen Schwachstellenmanagement?

Herkömmliche oder manuelle Verfahren zur Verwaltung von Schwachstellen sind in der Praxis komplex und nicht effizient. Abgesehen von den operativen Schwierigkeiten bei der Implementierung von Software-Patches behindert der Mangel an zugänglichen und zuverlässigen Informationen die Bemühungen um eine wirksame Sichtung und Behebung von Schwachstellen. Die alleinige Verwendung von CVSS zur Risikobewertung wurde ebenfalls kritisiert [1][2], da es an ausreichendem Kontext für eine solide risikobasierte Entscheidungsfindung mangelt. Obwohl Plattformen zur Verwaltung von Schwachstellen wie z. B. Greenbone die Belastung der IT-Sicherheitsteams erheblich verringern, ist der Gesamtprozess immer noch häufig von geplagt von einer zeitaufwändigen manuellen Zusammenstellung von Ad-hoc-Hinweisen auf Schwachstellen, die unvollständige Informationen zur Folge haben kann.

Vor allem angesichts der ständig wachsenden Zahl von Schwachstellen besteht die Gefahr, dass die Zusammenstellung von Ad-hoc-Sicherheitsinformationen zu langsam ist und zu mehr menschlichen Fehlern führt, wodurch die Zeit für die Aufdeckung von Schwachstellen verlängert und die risikobasierte Priorisierung von Schwachstellen erschwert wird.

Fehlende Standardisierung führt zu Ad-hoc-Intelligenz

Dem derzeitigen Verfahren zur Offenlegung von Schwachstellen fehlt eine formale Methode zur Unterscheidung zwischen zuverlässigen Informationen von Anbietern und Informationen, die von beliebigen unabhängigen Sicherheitsforschern wie den Partner-CNAs bereitgestellt werden. Tatsächlich wirbt die offizielle CVE-Website selbst für die niedrigen Anforderungen, die für eine CNA-Mitgliedschaft gelten. Dies führt dazu, dass eine große Anzahl von CVEs ohne detaillierten Kontext herausgegeben wird, was eine umfangreiche manuelle Anreicherung im nachgelagerten Bereich erzwingt.

Welche Informationen aufgenommen werden, liegt im Ermessen des CNA, und es gibt keine Möglichkeit, die Zuverlässigkeit der Informationen zu klassifizieren. Ein einfaches Beispiel für dieses Problem ist, dass die betroffenen Produkte in einem Ad-hoc-Hinweis oft mit einer Vielzahl von Deskriptoren angegeben werden, die manuell interpretiert werden müssen. Zum Beispiel:

  • Version 8.0.0 – 8.0.1
  • Version 8.1.5 und höher
  • Version <= 8.1.5
  • Versionen vor 8.1.5
  • Alle Versionen < V8.1.5
  • 0, V8.1, V8.1.1, V8.1.2, V8.1.3, V8.1.4, V8.1.5

Skalierbarkeit

Da Anbieter, Prüfer (CNAs) und Aggregatoren verschiedene Verteilungsmethoden und Formate für ihre Hinweise verwenden, wird die Herausforderung der effizienten Verfolgung und Verwaltung von Schwachstellen operativ komplex und schwer zu skalieren. Darüber hinaus verschlimmert die zunehmende Offenlegung von Schwachstellen die manuellen Prozesse, überfordert die Sicherheitsteams und erhöht das Risiko von Fehlern oder Verzögerungen bei den Abhilfemaßnahmen.

Schwierige Bewertung des Risikokontextes

NIST SP 800-40r4 „Guide to Enterprise Patch Management Planning“ Abschnitt 3 empfiehlt die Anwendung von Schwachstellen-Metriken auf Unternehmensebene. Da das Risiko letztlich vom Kontext jeder Schwachstelle abhängt – Faktoren wie betroffene Systeme, potenzielle Auswirkungen und Ausnutzbarkeit -, stellt die derzeitige Umgebung mit Ad-hoc-Sicherheitsinformationen ein erhebliches Hindernis für ein solides risikobasiertes Schwachstellenmanagement dar.

Wie löst CSAF 2.0 diese Probleme?

Bei den CSAF-Dokumenten handelt es sich um wichtige Hinweise zu Cyber-Bedrohungen, mit denen die Lieferkette für Schwachstelleninformationen optimiert werden kann. Anstatt Ad-hoc-Schwachstellendaten manuell zu sammeln, können Produktanwender maschinenlesbare CSAF-Hinweise aus vertrauenswürdigen Quellen automatisch in einem Advisory Management System zusammenführen, das die Kernfunktionen des Schwachstellenmanagements wie Asset-Matching und Risikobewertung kombiniert. Auf diese Weise zielt die Automatisierung von Sicherheitsinhalten mit CSAF darauf ab, die Herausforderungen des traditionellen Schwachstellenmanagements durch die Bereitstellung zuverlässigerer und effizienterer Sicherheitsinformationen zu bewältigen und das Potenzial für das Schwachstellenmanagement der nächsten Generation zu schaffen.

CSAF 2.0 löst die Probleme des traditionellen Schwachstellenmanagements auf folgende Weise:

Zuverlässigere Sicherheitsinformationen

CSAF 2.0 behebt das Problem der Ad-hoc-Sicherheitsinformationen, indem es mehrere Aspekte der Offenlegung von Sicherheitslücken standardisiert. So erlauben die Felder zur Angabe der betroffenen Version standardisierte Daten wie Version Range Specifier (vers), Common Platform Enumeration (CPE), Paket-URL-Spezifikation, CycloneDX SBOM sowie den allgemeinen Produktnamen, die Seriennummer, die Modellnummer, die SKU oder den File-Hash zur Identifizierung betroffener Produktversionen.

Neben der Standardisierung von Produktversionen unterstützt CSAF 2.0 auch den Austausch von Schwachstellen (Vulnerability Exploitability eXchange, VEX), mit dem Produkthersteller, vertrauenswürdige CSAF-Anbieter oder unabhängige Sicherheitsforscher explizit den Status der Produktbehebung angeben können. VEX liefert Produktanwendern Empfehlungen für Abhilfemaßnahmen.

Die expliziten VEX-Status-Deklarationen sind:

  • Nicht betroffen: Es sind keine Abhilfemaßnahmen bezüglich einer Schwachstelle erforderlich.
  • Betroffen: Es werden Maßnahmen empfohlen, um eine Schwachstelle zu beheben oder zu beseitigen.
  • Behoben: Bedeutet, dass diese Produktversionen einen Fix für eine Sicherheitslücke enthalten.
  • Wird untersucht: Es ist noch nicht bekannt, ob diese Produktversionen von einer Sicherheitslücke betroffen sind. Ein Update wird in einer späteren Version zur Verfügung gestellt.

Effektivere Nutzung von Ressourcen

CSAF ermöglicht mehrere vor- und nachgelagerte Optimierungen des traditionellen Schwachstellenmanagement-Prozesses. Die OASIS CSAF 2.0-Dokumentation enthält Beschreibungen mehrerer Konformitätsziele, die es Cybersecurity-Administratoren ermöglichen, ihre Sicherheitsabläufe zu automatisieren und so ihre Ressourcen effizienter zu nutzen.

Hier sind einige Zielvorgaben für die Einhaltung der Vorschriften, auf die im CSAF 2.0 die eine effektivere Nutzung von Ressourcen über den traditionellen Prozess des Schwachstellenmanagements hinaus unterstützen:

  • Advisory Management System: Ein Softwaresystem, das Daten verarbeitet und CSAF-2.0-konforme Beratungsdokumente erstellt. Es ermöglicht den CSAF-Produktionsteams, die Qualität der zu einem bestimmten Zeitpunkt eingehenden Daten zu bewerten, sie zu überprüfen, zu konvertieren und als gültige CSAF-2.0-Sicherheitshinweise zu veröffentlichen. Auf diese Weise können CSAF-Produzenten die Effizienz ihrer Informationspipeline optimieren und gleichzeitig sicherstellen, dass korrekte Hinweise veröffentlicht werden.
  • CSAF Management System: Ein Programm, das CSAF-Dokumente verwalten kann und in der Lage ist, deren Details gemäß den Anforderungen des CSAF-Viewers anzuzeigen. Auf der grundlegendsten Ebene ermöglicht dies sowohl den vorgelagerten Produzenten als auch den nachgelagerten Konsumenten von Sicherheitshinweisen, deren Inhalt in einem für Menschen lesbaren Format zu betrachten.
  • CSAF Asset Matching System / SBOM Matching System: Ein Programm, das mit einer Datenbank von IT-Assets, einschließlich Software Bill of Materials (SBOM), integriert wird und Assets mit allen CSAF-Hinweisen abgleichen kann. Ein Asset-Matching-System dient dazu, einem Unternehmen, das CSAF nutzt, Einblick in seine IT-Infrastruktur zu verschaffen, festzustellen, wo anfällige Produkte vorhanden sind, und optimale Informationen zur automatischen Risikobewertung und -behebung zu liefern.
  • Technisches System: Eine Softwareanalyse-Umgebung, in der Analysewerkzeuge ausgeführt werden. Ein Engineering-System kann ein Build-System, ein Versionskontrollsystem, ein Ergebnisverwaltungssystem, ein Fehlerverfolgungssystem, ein Testausführungssystem usw. umfassen.

Dezentralisierte Cybersicherheitsinformationen

Der kürzlich verkündete Ausfall des CVE-Anreicherungsprozesses der NIST National Vulnerability Database (NVD) zeigt, wie riskant es sein kann, sich auf eine einzige Quelle für Schwachstelleninformationen zu verlassen. CSAF ist dezentralisiert und ermöglicht es nachgelagerten Nutzern von Schwachstellen, Informationen aus einer Vielzahl von Quellen zu beziehen und zu integrieren. Dieses dezentralisierte Modell des Informationsaustauschs ist widerstandsfähiger gegen den Ausfall eines Informationsanbieters, während die Last der Anreicherung von Schwachstellen effektiver auf eine größere Anzahl von Beteiligten verteilt wird.

Anbieter von IT-Produkten für Unternehmen wie RedHat und Cisco haben bereits ihre eigenen CSAF- und VEX-Feeds erstellt, während staatliche Cybersicherheitsbehörden und nationale CERT-Programme wie das deutsche Bundesamt für Sicherheit in der Informationstechnik (BSI) und die US-amerikanische Cybersecurity & Infrastructure Security Agency (CISA) ebenfalls CSAF-2.0-Austauschfunktionen entwickelt haben. 

Das dezentralisierte Modell ermöglicht es auch, dass sich mehrere Interessengruppen zu einer bestimmten Schwachstelle äußern, so dass die nachgeschalteten Verbraucher mehr Informationen über eine Schwachstelle erhalten. Mit anderen Worten: Eine Informationslücke in einem Gutachten kann von einem alternativen Hersteller geschlossen werden, der die genaueste Bewertung oder spezialisierte Analyse liefert.

Verbesserte Risikobewertung und Priorisierung von Schwachstellen

Insgesamt tragen die Vorteile des CSAF 2.0 zu einer genaueren und effizienteren Risikobewertung, Priorisierung und Abhilfemaßnahmen bei. Produktanbieter können direkt verlässliche VEX-Hinweise veröffentlichen, die Entscheidungsträgern im Bereich Cybersicherheit zeitnahe und vertrauenswürdige Informationen zu Abhilfemaßnahmen liefern. Außerdem dient das aggregierte Schweregradobjekt (aggregate_severity) in CSAF 2.0 als Vehikel, um verlässliche Dringlichkeits- und Kritikalitätsinformationen für eine Gruppe von Schwachstellen zu übermitteln, was eine einheitlichere Risikoanalyse und eine datengesteuerte Priorisierung von Abhilfemaßnahmen ermöglicht und die Expositionszeit kritischer Schwachstellen verkürzt.

Zusammenfassung

Herkömmliche Verfahren zum Management von Schwachstellen leiden unter mangelnder Standardisierung, was zu Problemen bei der Zuverlässigkeit und Skalierbarkeit führt und die Bewertung des Risikokontexts sowie die Fehlerwahrscheinlichkeit erschwert.

Das Common Security Advisory Framework (CSAF) 2.0 zielt darauf ab, den bestehenden Prozess des Schwachstellenmanagements zu revolutionieren, indem es eine zuverlässigere, automatisierte Sammlung von Schwachstelleninformationen ermöglicht. Durch die Bereitstellung eines standardisierten, maschinenlesbaren Formats für den Austausch von Schwachstelleninformationen im Bereich der Cybersicherheit und die Dezentralisierung ihrer Quelle versetzt CSAF 2.0 Organisationen in die Lage, zuverlässigere Sicherheitsinformationen zu nutzen, um ein genaueres, effizienteres und konsistenteres Schwachstellenmanagement zu erreichen.

Die Greenbone AG ist offizieller Partner des Bundesamtes für Sicherheit in der Informationstechnik (BSI) bei der Integration von Technologien, die den CSAF 2.0 Standard für automatisierte Cybersecurity Advisories nutzen.

Kontakt Kostenlos testen Hier kaufen Zurück zur Übersicht